CONTRIBUTION TO A MONOGRAPH OF THE INSECTS OF THE ORDER THYSANOPTERA INHABITLNG NORTH AMERICA.

By Warren Elmer Hinds, Of the Massachusefts Agricultural College.

INTRODUCTION.

Very little attention has been given to the Thysanoptera of Noth America. So far as I can learn, descriptions or names of only twentythree species have thus far (Jume, 1902) been puhlished, besides three which have been recognized as previously described from Emrope. Of the twenty-six species thus known in this country, four at least are (ertainly mrecognizable (Limothrips tritici Packard, Ihluothrijs mali Fitch, P. corye Fitch, Thrijs ploylloxere Riley). Of the remaining twenty-two, six have been found identical with previously described species and therefore become synonyms-the large number is not surprising as many of the early deseriptions are entirely too brief to insure positive identification. Therefore only sixteen species have hitherto been known to occur in this country. We may say that ahmost no systematic work has been done on the order in the United States, and, with the exception of a study of the "Thripidae of Iowa," by Miss Alice M. Beach, most of the descriptions are seattered through different publications. I have endearored to collect and present here such important facts as have already been published relating to members of this order, together with the observations which I have been able to make. An attempt has been made to place the work upon a systematic basis, and in order to make the descrip)tions uniform, and thus comparative, all the existing types that it has been possible for me to see have been examined and redescribed. In all, thirty-seven species are thas treated in the systematic part of this paper. Other descriptions which it has not been possible for me to place are given together by themselves in the hope that some one more fortmate or skillful than myself may have material hy which to identify them.

There are given herein deseriptions of eighteen speeies which I believe to be new. all but two of them having been collected at Amherst, Massachusetts, and within a radus of 2 miles of the Massachusetts. Agricultural College, but even this field has not yet been thoroughly collected. The abundance of new species obtained within such narrow limits shows us how very little has been done upon this order and therefore it will not be surprising, when more attention shall he given to there tiny insects by collectors, if this small order, which has been considered as insignificant in numbers as well as in the size of its individuals, should prove to be quite extensive in the number of its species. Of the new species described in this paper, a complete set of types has been deposited in the Massachusetts Agricultural College; a set of cotypes, so far as they exist, has been deposited in the United States National Museum; a third set of cotypes I have retained for my own use. and the remainder I have also deposited in the Massachusetts Agricultural College. The number of specimens from which the species has been deseribed follows each deseription. Eleven of the thirteen previonsly described American species have been redescribed as have also a number which I believe have been previously described in Europe. Descriptions of early stages have been given where known and the anthority therefor noted in each instance. It will be noticed that in all cases the description of the female precedes that of the male, or the latter may be wanting entirely. Among the Thysanoptera the females are much more abundant than the males and also more characteristic when both are known. For these reasons all of the descriptions are based mainly upon the female. It would be impossible to give a bibliography of the pecies of this country without including many references to European works. Therefore the bibliography is intended to include the literature of this order for the world rather than for North America alone. Each reference has been numbered so that it could be referred to by number when desired withont repeating the whole title. Such references have been made by inserting the bibliographical number inclosed ly a parenthesis where authority for a statement is referred to, thus, (I).
I desire here to acknowledge that I am under many obligations to those who have assisted in making this paper more complete by kindly loaning type specimens, withont the examination of which the idendification of several species could not have been certain. I should state that these types were not loaned to me direetly, but to Prof. C. H. Fermald. who kindly took upon himself the responsibility for them, but as I have been the one to profit by them it gives me pleasure to express my thanks to Prof. J. H. Comstock, through whose kindness I was able to see the type of Limothrips poaphagus; to Prof. Herbert Osborn for the privilege of examining at my leisure his type of Thrips
striatu; to Prof. C. P. Gillette for the loan of his supposed Thrij) striatus; to Prof. H. E. Somers for sending the types of Miss Beach and Professor Osborn, with their kind permission, to D_{1}. Hemry Uzel for the positive identification of Thripss tubucici with his Thrips commenis, and finally to Dr. L. O. Howard and Mr. Theodore Pergande for giving me access to the material in the U'nited states National Museum collection.

This paper forms the major portion of a thesis for the degree of doctor of philosophy at the Massachusetts Agricultural College, where it has been prepared under the supervision of Prof. Charles 11 . Fermald and Dr. Hemry T. Fernald, who have charge of the work in the department of entomology. 'To both, for the many ways in which they have guided and encouraged me in the work of the past three years. I give my heartiest thanks.

HISTORY OF THYEANOPTERA.

These insects were first deseribed by DeGeer in 1744 . under the name Physapus (2). Linneus ignored this name and plated the four species known to him in a genus which he called Thrips. loeating it in the order Hemiptera, immediately after his genu* Cócens (5). In 1806. C. Dumeril raised the group to the rank of a family, which he called Vesitarses or Physapodes but retained it in the order Hemiptera $(4 t)$. C. F. Fallen (47), in 1814, changed the name of the family to "Thripsites," but did not change its ordinal position, and this name was retained by Newman (61) as the name of a " natural order," which. howerer, had only family value. In 1825, Latreille (5(t) used for them the names Thripsides and Physapi. A. H. Haliday, in 1836, published an extensive study of the British insects belonging to this group and coneluded that they should be given the rank of an order, for which he proposed the name Thysanoptera (6:3). Probably abont two years later, Burmeister (69) also gave them ordinal rank, with the name Physapoda, since which time most writers have adopted one or the other of these ordinal names. Those who adopt Physapoda appear to hase their preference largely upon the priority of Dumeril's use of the name Physapodes, Physopoda (Physapoda) being a re-formation of the term. It does not, however, seem to the writer that this position can be sustained, as at that time there was no genus Physopus, DeGeer's name having no standing, at it was given before the tenth edition of Systema Nature. ${ }^{a}$

It seems therefore that Haliday was the first to give the group the rank of an order and to apply thereto a properly formed ordinal name: Thysmoptera, from Zíoavos, a tassel, and $\pi \tau \varepsilon p o r^{\prime}$ a wing. This basing of the mame upon characters of the wings is in aceord with general usage in the various orders of insects. I helieve that Thysan-

[^0]Proc. N. M. rol. xxyi- $(2)-6$
optera can rlam priority and correctness of formation and should therefore be adopeded.

While the scientific mame of the gronp has been subjected to so many changes, the most frequently used common name has persisted unchanged since the time of Limneus. It is nothing more or less than the name whieh he gave to the genus Thrips, and is now applied in the sume form to :my individual of the order. It is therefore incorrect to drop the ${ }^{-}$". when referring to an individual, as is frequently done. Thrips is a Latin name derived from the Greek Iput, meaning a wood-louse, and is in the singular momber and masculine gender, as will be also all generic names of which it forms the termination.

Sarious other common mames hased upon two of the most striking characters of the group have also been used to a limited extent: Bladder feet (Blasenfusse or Vesitarses), referring to the peculiar strueture of the extremity of the leg, is appropriate and much used by German writers. Fringe-wings, from Thysanoptera, has also been used, but much more rarely.

SYSTEALATIC POSITION OF TIISANOPTERA.

The systematic position of this group has undergone unusual change since its establishment by Limmeus. Working as be did upon the most striking superficial characters, Limmeus recognized in Thrips certain affinities with the Hemiptera-Homoptera, in which order he placed them. About 1528 through the amatomical studies of StrausDurchein and Latreille, sufficient ovidence was obtained to lead Latreille to separate them from the Hemiptera and place them among the Orthoptera. By other writers they have been regrarded as Psendoneuroptera, hut at the present time the general opinion is that they form an order by themselves.

So far as the writer can learn, the best work dealing with this question has been done by .Jordan (309). His studies were made principally upon The ionthrips drecaence Heeger, representing the Terebrantia and Ibluruthrijs brammen . Iordan, represcnting the Tubulifera, but many other species were also considered and his conclusions are based upon anatomical (both extermal and intermal) and biological considerations. The following is a free translation of a portion of Jordan's conchusion.

In regard to the place of Physapoda, we must classify them according to their immersed germ band and their larval form in the line of the Orthoptera, Homoptera, IIemiptera, wherein they shonld be placed according to their anatomy and biology.

In habits the Physapoda, expecially the larve, resemble small (icadelline. The hypognathism of Thrips is found in such marked degree that the mouth cone comes to lie under the prothorax as in the case of Homoptera, especially Phytophthira. The number and position of the ocelli resembles the Orthopteras. I. more than the Homoptera, while the position of the antenne is sinilar to that of the Orthoptera
and Aphidar. In the structure of the mouthparts, the Physapota are not as far removed from the Orthoptera as are the Rhynchota; the Physapol proboscis is of a type between the biting mouthparts of Orthnptera and the sucking month of the Rhynchota, hy which it is not meant that the Homoptera have developed from our Physaporta. The biting mouth organs of the Orthoptera are here concealed by the transformation of the mandibles into piercing bristles and the growing together of the labrum with the maxillie and labium, while the piercing bristles form a short tube to the sucking proboscis. In this respert the Physaporla should be considered as Rhynchota together with the Homoptera and Heteroptera.

Thrijs have the free prothorax in common with the Orthopteras. I. and the Rynchota. The development of the meso and metathorax shows that at least the metasternum and mesosternum are nearly equal to those in the Orthoptera, while the alsence of the metaphragma, which is always present in the Orthoptera, and the disappearance of the long metathoracic moscles which are not reduced there, bring Thrips into close connection with the Homoptera. The tirst ventral ring is maintained through the absence of the first rentral plate and the entrance of the dorsal plate into the thoracic corering in the Physapoda just as in many Orthoptera $\& .1$., but a quite similar condition is also shown in the first abdominal segment of the Homopterous Psyllidex, a sign that Orthopteroid characters may be retained even in genuine Rhynchota.

A reduction of the system of venation of the wing takes place in the lhytophthira as in the Physaporla, but not in the same degree in the Orthopteras. l. Th-i'hysapod wing is a Phytophthiran wing in which the large spread is greatly reduced, as in the Pterophoride, by the development of long fringes.

In regard to the concentrated nervons system, Thrips come very close to Rhynchota and are far removed from the Orthoptera, but in this connection it is worth noting that the aberrant Mallophaga, provided with biting mouth parts, also possess a concentrated nervous system. Aside from these doubtful cases, all other Orthoptera have a developed chain of ventral ganglia. The tracheal system of Thrips has the small number of three or four pairs of stigmata. We find the stigmata reduced usually in the breathing organs of holometabolous insects. Among the Rhynchota we find it as in the Coccilse; all other Rhynchota and the Orthoptera are holopneustic. The alimentary canal of Physapoda is characterized by the possession of four malpighian ressels which occur in like manner in all Rhynchota with the exception of the Aphide which have none, and the Coccide which have two urinary organs. The Orthoptera have a large number of urinary tubes, with the exception of the Termitider and Psoridre with six and the Mallophaga with four. The long, slenter asophagus of Terebrantia which reaches even into the abdomen is found also in the Psyllida, the large loop of the midgut of Terebrantia is characteristic of many Homoptera, but in these the enlargement of the loop of the gut running back, takes place at the beginning of the midgut.

The male sexual apparatus, with its simple, often pear-shaped testes, resembles the Mallophaga about as much as the Phytophthira; the female organs, from the rosette arrangement of the orarian tules, resembles the tubes in the Rhynchota; the want of connective strands of the eggs with the germ area places the ovaries especially beside those of the Cicadelline. The genital armature of the Terebrantia is found in the Orthoptera and Phytophthira.

In anatomical respects, therefore, the Physapoda come nearer the Homoptera than the Orthopteras. I. There is also a series of biological facts which strengthen still further the connection of these insects with the Homoptera. First, I would recall that the Physapota with their nymph and pronymph stages, in which they take no nourishment, exhibit a very similar transformation to that which is known to take place in Coccid males. The parthenogenesis of Thrips is not Orthopteroid, but a method of reproduction which is peculiar chiefly to the Phytophthira. The frequent
oceurrence of apterous species without rudiments of wings, the condition that one sex is so frequently winged while the other is wingless, that anong the normally wingel pecies there appear individuals with reduced wings, that the latter phenomenon occurs especially toward autumn; all these are occurrences which take place to a considerable degree in the Phytophthira.

The manner of nourishment of Thrips, their life in larval eolonies, the rapid and successive development of each generation, the sucking of plant ronts by the larva, the perionlical swarming of multitudes of the winged species give to Thrips throughout an Aphid-like character.

Therefore we can not doubt that we must separate the Physapola from the Orthopteras. l., but we must still determine whether we may incorporate them into the Rhynchota. It we maintain the division of the insects into eight orders (Thysanura, Orthopteras. l., Rhynehota, Neuroptera, Lepidoptera, Diptera, Itymenoptera, and Coleoptera) and inelude in these orders the aberrant Siphonaptera, Mallophaga, Strepsiptera, the first in the Diptera, the others in the Orthoptera and Coleoptera, then we must also consider the Physapoda as Rhynchota and divide the Rhynchota into Heteroptera, Homoptera, and Physapoda.

But if, according to Braner's classification, we break up the conglomeration of the Orthopteras. 1. into several orders of inseets equivalent to the well-defined Coleoptera, Hymenoptera, Lepidoptera, Diptera, and Neuroptera, and also consider the aberrant Siphonaptera as a single order, just as the Bryozoa, Eehinorhyncha, etc., represent aberrant types of worms, then there is no necessity for destroying the unity of the type of the Rhynchota by the incorporation of the Physapoda, but we can ereet for Thrips a new order, the phyllogenetic value of which we find in that they hare branehed off from the line of the Orthoptera-Homoptera-Heteroptera where the Orthopteroid characters of the Homoptera are not entirely suppressed, and that they exhibit special mouth parts which morphologically still remain somewhat Orthopteroid, but functionally are quite Rhynehotoid. The Mallophaga with their Rhyn-chota-like nervous system and their four malpighian ressels must have branched off before the Physapoda. Their speeial connection with the Physapoda arises from the form of the tracheal stigmata in the development of the thorax in which the metanotum, as in the Phrsaporla, is larger than the mesonotum in contrast with all Rhynchota and Orthoptera. If we collect the Mallophaga, Psocidx, and Termitidæ as Corrodentia with Brauer, then we must place Physapoda in the system between Corrodentia and Rhynchota.

COLLECTION OF THYSANOPTERA.
As the life habits of species of this order differ rery greatly, the methods of collection must he varied according to the species. The majority of these insects are to be found in flowers, grass, etc.; many are found exclusively in turf or near the surface of the ground; others are taken most commonlv under the bark of trees. on foliage, ete.

For the grass-inhabiting species, I have found a short-handled sweeping net, made of tine muslin, most serviceable. Other cloths may be used. but the texture must be considerably finer than that of cheese cloth or many of the smaller species can easily pass through it and escape. As a white background greatly facilitates the observation of these small creatures, the contents of the net may be carefully examined by slowly turning it inside out without emptying it or the net may be emptied and the contents be examined upon a sheet of white paper carried for the purpose. Small phials serve as convenient recep-
tacles for the collections from various plants or other sources and thes they may be kept separate if desired. The most convenient method yet found for catching these lively little animals is to moisten a fine camel:shair brush and place it directly upon the escaping a wotively jumping or flying forms. Those that are more sluggish in their movements can be easily lifted upon the point of the brush and transferred to the phial, which may be stoppered with a cork or wad of cotton. A label giving such data as it is desired to preserve may be placed in the phial or attached to the ontside and a bit of the food plant may well be placed inside with the insects. In this hottle they may be kept alive for some time, if it is not convenient to preserve them at onee.

Uzel recommends for collection from flowers, inclosing the flower head, insects and all, in a four-cornered paper lag, folding the upper edge over twice and fastening with a pin. Flowers of only one sort should be placed in a big. The contents of the bage are examined at home upon a sheet of white paper and the escaping creatures captured with the aid of a fine brush dipped in alcohol. In winter, dried flowers and grass stems yield many hibernating forms.

Tree-inhabiting species may be found by beating orer a white surface, or foliage may be collected and sifted by means of a fine beetle sieve, which is a great convenience for this work. In this way may be found also many species inhabiting turf, moss, fallen foliage. or decaying bark. The sifting may be done directly over white paper or the siftings collected by means of a fine bag fastened around the sieve and examined at the collector's leisure at home. Some species are known to inhabit certain oak galls and probably other galls will be fonnd to shelter other species. The gall is, as a rule, the work of some other insect which the Thrips has appropriated for its home, but in Australia some galls are said to be formed by the Thrips themselves. Both Uzel and. Iordan state that many inhabit fungi, but I have not yet found any in such a location.

PRESERVATION AND MOUNTIN(i.

Various methods of preserving these tiny insects have been tried. Being so small that it is impossible to study them without the aid of a compound microscope, the method has been sought for which would best preserve the natural form and color of the insect and the most satisfactory results have been obtained in the following simple way:

The specimens to be mounted, having been brought into the laborattory alive in small bottles, are quickly killed, and at the same time eleared, by dropping them directly into xylol in which they are left for about an hour. They may then be mounted directly in balsam dissolved in xylol without danger of cloudiness resulting from moisture in the insect body. The mounts are clear, natural colors are well preserved, and when dried they are permanent and always avalable
for study. Working with such small insects, it is diffecult to arrange them satisfactorily upon the slide, but with patience and care this can be accomplished faitly well. The wings shouk be spread, and this condition has, as a rule, been most easily obtained by tramserering the insect from the xylol to the center of a clem slide, and then teasing the wings out to the desired position by means of a tine bristle. The balsam is then placed on the cover and gently lowered onto the insect. As the balwim spreads it tends to carry ont the wings. legs, and anteme so that they are in a position for study. It is a consenience in study to have two specimens on the same slide, one being dorsal. the other rentral side up. Specimens of different speries should not be placed upon the same slide. If it is desired to keep a large number of duplicates, it is not, perhaps, advisable to mount them all in this way, as they can be fairly well preserved by placing the living insects directly in ahout 80 per cent alcohol. Alcohol is, however, liable, or eren likely, to canse an abmormal distension of the body, especially with Tubulifera, and if some of these distended specimens are afterwards monted permanently for study it will be found that their general appearance has hecome so changed that the species is scarcely recognizable. For this reason I can recommend alcohol only for duplicates of well known specios and never for undescribed material.

While balsam mounts, made as described, seem to be best for preserving the general natural appearance of the insect, mounts made in another way are more useful for study of the chitinons structure. Everything but the chitin is dissolved by allowing the specimen to mascerate for from twenty-four to thirty-six hours in a cold 10 per cent solution of caustic potash, or by boiling for a few minutes in a little of the same solution. When thoronghly cleared the specimen may be mounted directly in glycerin, or wathed in water, dehydrated in alcohol followed by xylol, and then mounted in balsam. Such mounts can be examined under high-power lenses and reveal many fine details of chitinons structure which can not be seen in ordinary mounts.

A few words in regard to glycerin mounts may sare some one such disappointment and loss as my experience with them has caused me. During one summer quite a large number of mounts were made by placing the insect directly into glycerin contained in a low cell. made either of white zinc cement or hard glyeerin jelly, the cover glase being carefully sealed on with the white zine cement in each case. These mounts were beautifully clear at first and were placed aside for study during the winter. When examined again after a few months they were found to be ruined and worthless. Nearly every specimen was more or less thickly covered, especially around the spiracles and thin membranons areas, with dense clusters of white, needle-like
crystals, many of which were also floating through the glyeerin. As a result these slides, containing most of the results of a summer's collecting, had to be thrown away. The exact composition of the crystals was not determined. but it is supposed that they were mostly phosphates which had been dissolved in the juices of the insects body. As the juices were gradually drawn out, the phosphatic salts, not being soluble in the glycerin, were doposited as the white cerstals.

There are still other oljeations to glycerin as a mounting medium for Thysanoptera, though it may be all right for other insects. The dark piginent of the eyes is frequently dissolved out by glyecrin, and spreads all through the head, suffusing it with a dark color, which obscures all details in that region. Furthermore, glyeerin does not preserve the tissues of the body for a very long time. They gradually go to pieces, the segments spread apart, and the mount becomes worthless in the course of a few years. Of course this objection to glycerin does apply to the mounting of chitin which has been cleared from all soft tissues hy treatment with eaustic potash solution, as chitin is unatfected by glycerin.

FATERNAL ANATOMY.

INTEGUMENT.

Adult. - The chitinous skeleton of these insects is quite firm. The body wall is made up of strongly chitinized, rigid plates joinel together by thin and very flexible membranes. The texture of the plates appears usually to be quite uniform in different parts of the same specimen. In the head, especially, several of them are so smoothly joined that no sutures are visible. The thin connecting membrane may be smooth and of a miform thickness, or, as in many parts of the Tubulifera, it may show a peculiar structure in the nature of regular, distinct, very minute, plate-like thickenings. varying in form but often circular or hexagonal, giving a decidedly gramular appeatamce to the area.

The chitin is frequently thrown into more or less distinct folds or ridges, most frequently transverse in direction, but often branching and running together to form a reticulated structure. The back of the head and the pronotum are most frequently marked in this way. Sometimes the ridges become very thick and pronounced, and form a regular netrork over the surface so conspicuous as to be of use in classification (Ifelinthrip)s, I'(trthenothrips, see Plate VI, fig. (it). This reticulation may extend over the whole outer surface of the body, legs, and even the fore wings, but always seems to be heaviest upon the head and pronotum. It is not known to occur in the Eolothripida, but is found in several species of Thripida, and I have discovered it in an undescribed species of Phleothripida.

In certain part- of the body there are found invaginations of the chitinons, external skeleton serving as advantageous points for the attachment of muscles. These can best be seen on the meso and metasternal plates of winged speecies of Thripida. and are darker than the plates in color. Hany species show a narrow, transerse line across the second to seventh dorsal atulominal plates near the anterior edge of each. This dark line is cansed by a chitinons, ridge-like thickening forming an arch on the inside of each of these plater.

The chitin of the skeleton is rarely entirely mpigmented. Pigmentation maty take place in the cuticle itself, when the color is usually gray yellow, hrown, or hack, or color may appear from pigments deposited in the hypodermis or fat-body. Such deposits are asually very irregular and of a yellow, red, or purple color. Pigments are frequently present in both places in the same individual. Metallie colors ilo not occur.

Lured.-The chitin of the larva is much less firm than that of the adult, and there is scarcely any differentiation in texture or structure between the plates and comecting membranes. The surface is not reticulated, but is usually considerably wrinkled transsersely and roughened, though sometimes it is quite smooth.

Pigments are rarely present in the chitin of the larva, and when they do ocrur the colors seem to be limited to gray. yellow, or brown. Larra are usually of yellow or red color, but these colors are due to hypodermal or fat-body pigments. and to some extent, perhaps, to the body fluids.

Prom.-The delicacy of the chitinous covering of the early stages can he seen during the period of transformation. It is then thin, smooth, and often shining. The cuticle forms a delicate sheath around the wings, antemme, and legs, and toward the end of this stage can be plainly seen separated from the body of the inclosed adult.

Integumental appenduges.- These are present in the form of hairs, bristles, or spines which are varionsly modified. They are frequently borme upon small warts or tubercles which can be most distinctly seen upon the cheeks of many Tubulifera. The membranes of the wings are thickly set with microscopic hairs, usually either darker than the membrane itself or sharing its color. In some species (Sericothri),s, various species) the abdomen is also thickly set with microseopic hairs, giving it a sleek, velvety appearance, and whorls of similar minute hairs often mark the antennal segments. The posterior fringes of the wings are always composed of long slender hairs, usually more or less spiral or wary in appearance and inserted either directly into the edge of the wing (Tubulifera) or attached by a joint to a fixed base upon the edge (Terebrantia). This joint allows of motion only in the plane of the wing and toward its tip; it facilitates the folding of the hairs into line with the edge of the wing when the latter is brought to rest.

In nearly all species numerons short, small spines are borne upon the various parts, especially upon the prothorax, legs, and antenne. Larger and more conspicuons spines or bristles mark especially the exposed parts of the hody such as the vertex of the head, the angles of the prothoras, the veins of the wings in the Terebrantia, and the last two or three segments of the abdomen. Special modifications of these larger spines are found in many adult 'Tubulifera in the form of hairs which have usually a slender shaft and at the tip are romedly knobbed or irregularly fumel-shaped, though sometimes they are short and cut off squarely at the tip where they are fully an large as at their hase.

Larve and pupa of both suborders, in many rases, bear such knobbed or funnel hairs which, when present in the pupa, are even longer and more slender than in the larva. The spines in many cases are placed in 'quite regular segmental rows, both in tramserse and longitudinal directions.

HEAD.

The form of the head is peculiar and extremely variable. (See figs. t. $14,27,55,93,107$, etc.) But while this variation is great between different species, the proportion of length to breadth in the same species is very constant. The different selerites forming the head are so completely fused as to be indistinguishable and we can therefore designate the regions of the head only in a general way. The dorsal portion back of the eyes is called the occiput, that between the eyes and extending forward to the bases of the antenme is the rertex. between the bases of the antenna and the attachment of the month cone on the rentral side is the frons, while the sides of the head are called the cheeks (gene of other orders). The usual appendages of the insect head are present and will be considered separately:

Antemie.-These are inserted upon the extreme front of the heald and stand quite closely together upon the front margin between the eyes. They are always much longer than the had and may be two or three times as long. The number of segments is a character of much importance in classification and raries from six to nine. The form of the segments ranges from eylindrical to almost spherical, and this character is also of importance in classification. The spines upon the segments become more numerous as the apex is approached, and on the intermediate segments are mostly borne upon the apical half of each. The Eolothripidae lack the specialized form and arrangement of the spines which is found in Thripide; their antemme are quite miformly clothed with short hairs or bristles. In the Thripide this general hairiness is lost, exeept in those species having whorls of hairs around intermediate segments, while a few much longer and usually more conspicuous spines are developed. The antennal spines of Phloothripide resemble in a general way those of Thripide. In both
these families certain spines seem to have undergone much modification and to have become specialized as sense organs of some particular sort. (See Plate XI, figs. 123,124 .) They are larger than the unspecialized spines, thin walled and almost tramparent, and usually end in a hont point. In some species they are quite prominent, but as a rule are inconspicuous and require a careful adjustment of the light to be cleary seen. They are always simple in Phloothripidse and are usually borme upon segments three to five, sometimes three to seven.

In the Thripida similar structures are found. but they have undergone even greater specialization in most cases. In a few genera (Chirothrijes. Limothrips, Aptimothrips. and I'erthonothrijss) they are simple and stand singly, one to a segment, upon the outer angles of segments three, four, and sometimes five, and upon the inner side at about the middle of six. In most eases, howerer, it appears that two of these specialized spines have approached and united at their base, so that we find upon the upper side of segment three and the under side of four. near their tips, a peruliar creseentie organ having the same apparent structure as the specialized spines just deseribed and borme upon a small stalk standing in a clear, membranous area. (Plate XI, fig. 123.) In some cases these organs are shaped much like the horns of cattle and are curved in two directions, being curved forward and also toward the axis of the antenna. The fifth segment sometimes bears a simple spine and another one is also well developed upon the inner side of the sixth. The function of these structures is uncertain, but they are usmally called sense cones.

In the Eolothripida an entirely different type of sense organ is found, though the two may possibly have much the same function. Upon the underside of segments three and four are narrow, much elongated longitudinally, thin, membranous areas, situated upon the outer half of each regment and a rery small round spot of similar structure is similarly placed near the tip of segment fiye. (Plate XI, fig. 1ٌ2.) These membranous areas strongly suggest an anditory function, hut this is, perhaps, only a possibility.

Abnormal antenne are not uncommon, and one or both may be deformed. The most common variation is in the line of a reduction in the number of segments through the fusion of two or more of the apical ones. Such deformed antenna may not be shorter than the normal ones, but there is usually some reduction in length. In one case, at least (1ptimothrips mfus var. commatticomis), there occurs a regular and apparently normal fusion of the two segments constituting the style of the typical form with the sixth segment (Plate V, figs. 52,54), which in this case is considered as a varictal distinction. An increase in the number of segments above the normal, by a division of one or more, is not known.

The antemnare carried extended forward in front of the head, and
are not normally laid back along the body when at rest. In the Terebrantia the first two segments are usually markedly broader than the others.

Larval anteme vary considerably from those of adults. The number of segments is constantly smaller, and the form is generally changed. Sense cones are not present, and the arrangement of spines is quite different from that in the adult.

ORGANS OF VINION.
Eyex.-Adult Thrips possess faceted eyes, which are borne upon the front angles of the head and extend downward onto the frons about as far as they do upward onto the rertex; rarely they are situated farther back upon the sides of the head, but still near the front. They are circular, oval, or reniform in ontline. The size and number of facets raries considerably in different species, as does also the closeness of the facets to each other. The eyes are quite large, as compared with the size of the head, being together about one-half the width of the head through them. In many species, especially in Terebrantia, they are strongly protruding (Ielinthrips, Purthenothrips). The individual facets are usually considerably swollen, and small hairs project from between them, thus giving the eye a peeuliar resemblance to the surface of a raspberry. The cornea is quite thick, transparent, usually slightly tinged with yellow, and appears like a lightcolored margin around the outside of the eye. The part of the head closely adjoining the eye is frequently also much lighter in color than the remainder of the head.

The pigmentation of the eye is dense and dark, so that, as a rule, by transmitted light the eve is entirely opaque, while by reflected light it may be red or very dark purple in color.

The eyes of larve are much smaller and simpler than those of the adults. They consist of hut few large, separated facets, and are situ ated farther back upon the sides of the head.

Ocelli.-These are adult struetures, and are not present in larre, though the pigment of the developing ocelli (an sometimes be seen late in the larral stage. They are not always present, however, even in the adults. They are three in number, situated more or less closely together between the eyes on the rertex of the head, and are placed always in the form of a triangle, with its apex forward. Rarely only two ocelli are present, and it is then the front one which is wanting. Ocelli are present in all winged forms, and usually also in the shortwinged forms of winged species. They are absent, howerer, in entirely wingless species.

The mouth parts of Thrips are difficult to study, and so peculialy modified that it has been found hard to determine their homologies.

This fact accounts largely for the many changes which have been made in the classification of this group. It is now generally admitted that their action is largely suctorial. They exhibit structures which seem to show a transition from a mandibulate to a hanstellate form, and for this reason are of peculiar interest.

As a whole the mouth apparatus appears as a broad, unjointed cone attached to the extreme posterior edge of the under side of the head, being carried so far back that its attachment to the rest of the head lies largely under the pronotum (Plate X, fig. 111). The apex of the cone is usnally quite sharp, but never as slender as in the Hemiptera, and lies, when at rest. in a depression of the prosternum between the fore coxa. In many species the mouth cone is huntly rounded. In the Terebrantia it is attached to the frons by a strongly chitinized thickening, ruming more or less obliquely across the under side of the head. In most species this dark thickening is nearer the left eye tham the right and is connected by a similar thickening with the margin of the left eye (Plate XI, fig. 120). This connection is wanting on the right side, though a portion of the thickening still remains close to the right eye. In the Tubulifera the base of the mouth cone is much more nearly symmetrical and the comnections with the eyes are entirely wanting (Plate XI, fig. 127).

Asymmetry. - So far as we can learn, Prof. H. Garman was the first to call attention to the very peculiar asymmetry which is characteristic: of the month parts of the members of this order, and he gave a new interpretation to certain of these parts, which we believe to be correct.

Not only is the connection of the mouth cone, as a whole, with the frons asymmetrical, but also some of the individual parts of the mouth are markedly so. The most striking of these are the form of the labrum and the absence of the right mandible. These parts will be considered more in detail by themselves.

Lctbrum. -The labrum forms the front wall of the cone (Plate XI, figs. $1 \because 0,12$ 万). It is decidedly asymmetrical in all Thysanoptera, but especially so in the Terebrantia. It is irregularly triangular in form, does not reach to the endocranial thickening, but is attached by it, broad base to the clypeus by an indistinct membranous connection. From the base it narrows to the tip, where it is more or less rounded in Terebrantia, but is quite pointed and spine-like in many Tubulifera, though bluntly rounded in others. It is drawn out much farther toward the right cheek than toward the left, and on the right side also approaches most closely to the transverse thickening. The labrum is usually abruptly darker in color than the area between its base and the tramserse thickening.

Murillic.-The mixillie are broad, flat, and external. Like the labrum, they are wedge-shaped or triangular in general form, and they constitute the side walls of the mouth cone. They taper toward their
tips, where they are quite sharply pointed and strongly chitinized, and may reach slightly beyond the labrum. At about the middle point of the side of each maxilla is bome a two or three segmented palpus. In the Aolothripide this is always three segmented and geniculate; in the Thripida it is composed of two or three approximately equal segments and is straight, the segments being eylindrical but decreasing sucecssively in diameter; in the Phbeothripidat it always two segmented and the segments are very unequal in length, the basial one being short and rounded while the second is long, slender, and cylindrical. The terminal segment is in all cases provided with a few tonch bristles which are but rarely distinctly and easily visible.

Labium.-The labium is believed to be formed by the union of the second pair of maxiila and in many insects evidence of this cam be seen, but in the Thysanoptera there is no visible suture along the median line, though sometimes a deep median notch is present at the tip. It forms the hind wall of the mouth cone and is, as a rule, considerably broader at the tip than the other parts. In many species, of Tubulifera especially, it is very broad and heary at the tip, but in others it is narrowed and the whole mouth cone is then usually clongated and pointed. Standing closely together, each upon a membranous space a little to one side of the middle of the tip, are the two or four segmented, cylindrical, labial palpi. The maximum number of segments is here found also in the Eolothripidx, and the minimum number in the Thripidæ and Phloothripidæ. Around the tips of the labial palpi are borne a few touch bristles similar to those upon the maxillary palpi.

Within the hollow cone formed by the parts just described lie the protrusile, piereing organs of the Thysanopteran mouth. These organs are three in number and of two kinds. Their homologies have been confused by various writers.

Mandible-This is the large, unpaired, piercing spine lying on the left side in the month cavity. It has been rarionsly interpreted as epipharynx, mouth spine, etc. In the right side of the head there is no trace, or but a mere vestige, of the corresponding orgatn. The absence of the right mandible appears to be closely correlated to all the asymmetry of the mouth parts of these insects. The mandible consists of two parts, though these are not separated in any way. The large bulbous hase appears to be mostly muscular and is attached to the endocranial thickening behind the left eye close to the angle which is made by the endocraniom at this point, and about in line with the branch from this thickening rumning to the left eye in Terebrantia, which branch thas appears to form a strong brace. On the right side the absence of this endocranial branch is donbtless due to the nondevelopment of the right mandible, and the labrum has grown out farther on the right side to take the place in some measure of the
wanting structures. The muscular base is short and abruptly constricted, and from this point to the tip the mandible continnes as a slender, strongly chitinized spine having a rery sharp point. This structure is capable of protrusion for only about one-fourth of its length, and therefore appears to be used only for piereing the outer, tougher tissues of plants. The mandible in the Tubulifera is decidedly shorter and more bent than is that in the Terebrantia.

Maxillary lobex.-This pair of piercing organs has been considered by the majority of writers as the mandibles, but such they surely are not. Dissection shows that they are attached by a movable joint to the bases of the maxillie. Each lobe is composed of two parts: A short basal, muscular arm or lever attached to the maxilla, and at the other end united to the enlarged, muscular base of the spine which is very slender and strongly chitinized. These spines are longer and more slender than the mandible and are developed alike on cach side. When retracted into the mouth, the basal arm or lever extends obliquely forward so that the lever forms an acute angle with the spine, which then reaches just to the mouth, but when protruded the lever is brought down toward the mouth so as to straighten this joint, and the spine is thus thrust out from the mouth opening to a considerable distance. As these spines are more slender and protrude farther from the mouth than does the mandible, it appears probable that the latter is used to start the puncture through the hard, tough outer tissues, while the weaker lobes of the maxille, penetrating deeper through this opening, reach into the inner tissues. Some writers have stated that the three spines are hollow and used as suction tubes, but I have not found this to be the case in the species examined.

There is a marked difference in length of the maxillary lobes in the two suborders. In the Tubulifera they are extremely long, and when retracted curve far forward under the eyes, while in the Terebrantia the bend of the lobes searcely reaches beyond the transverse thickening. In the Tubulifera these lobes are altogether longer than the entire head and can be protruded in many species as far as the hind edge of the mesosterinum.

Other month structures. - Attached to the inner surface of the labium are certain other chitinized structures hard to describe and of uncertain homology, but considered by some as an hypopharynx.

Lerrax. - The month parts of the larva are much the same as those of the adult, though weaker and less strongly chitinized. The chitin of these structures is shed at each molt, and may then be seen connected with the cast-off skin.

Monements of mouth parts. - The parts forming the external-wall of the mouth cone are not free, being united by a membranous connection along their sides. At the tip of the cone there is a small opening. It thus appears that structurally these insects are incapable of biting or
chewing their food to any degree, though it has been stated that particles of leaf tissue have been detected in their excrement. This may be accounted for by the fact that the month parts are quite strongly chitinized at their tips, and so may serve, to some extent, to rasp or tear the tissues, small particles of which may be drawn into the alimentary canal with the sap.

THORAK.

(Plate NI, figs. 116-119, 125-127.)

The thorax is composed of three distinct segments, each of which is well developed. The prothorax is separated from the mesothorax by a deep constriction and is freely movable. The other thoracic segments are closely grown together and form what is convenientiy called the pterothorax. The laryal thorax shows no particular chitinized plates and its whole structure and the arrangement and development of the spines have been but little studied.

Most previous desiriptions of the thoracic structure of these insects have been very brief. Unfortunately Dr. Uzel has given the entire anatomical part of his monograph in Hungarian, and therefore his description of the thorax has not been arailable. It is evident that there is considerable variation in the thoracie structures in different species, and it may be that when carefully worked out these parts will be found to have considerable importance in classification, whereas they have not been used in this way heretofore. A general deseription of the parts of the thorax is difficult to give and must be subject to much modification in many species as the homologies of some parts are not well extablished.

Prothorad.-This segment is as wide or wider than the head and varies much in its proportions and form. It is rarely much longer than wide, usually exceeds the mesothorax in length, and in most cases approximately equals the metathorax. The form in the Terebrantia is usually more or less rectangular, with the sides and hind edge especially somewhat rounded. This form is also found in some Tubulifera, but as a rule among them the thorax is trapezoidal, being much wider at the hind edge than at the front. This trapezoidal form appears to be closely related to the development of the fore legs, smee in the genus Chiruthrips where the fore legs are extremely thickened there is found the same form of prothorax as in the Tubuliferan genera where the fore femora are also enlarged.
The pronotum is strongly chitinized. In the Thripidæ it is usually more or less transversely striated and often bears numerons small spines. In the other families it is generally smooth.
In most Thysanoptera the prothorax bears long conspicnons spines, the number and arrangement of which are much used in classification. These stand usually around the outside of the pronotum-one or two
at each angle and a pair on each of the transverse margins, and in some species one in the middle of each side. The maximmm number is therefore twelve. When only one or two pairs are present they are at the hind angles. The form and size of these spines is also variable. They may be quite short and inconspienous or nearly as long as the protonum itself. In many Ploothripidse they are knobbed or funnel shaped at the tips.

In a number of species of Tabulifera, a division of the pronotum into plates near the hind angles has been observed. Two triangular plates coming up from behind the middle on the side and at abont the hind angles meet at a point considerably within the margin and abore the fore coxt. The prosternum is less strongly chitinized than the pronotum and at about the middle of the fore edge is often indented to accommodate the month cone. The insertions of the fore coxa are at the hind angles and the distance between them depends upon the width of the hind edge of the prothorax. In some species the prosternum appears to be entirely membranons, while in others there are two small plates between the coxa near the hind margin. The epistermm and epimeron are more easily distinguishable in most Tubulifera than in Terehrantia.

Mesothorwr.-The mesothorax is a broad, short segment, often the broadest of the body. The mesonotum is shorter than the mesostermm, though the latter approximately equals the metasternum as a rule, in consequence of which the division between the meso and metathoracic segments is oblique. The mesoscutum is usually a rather hexagonal plate, somewhat broader than long, and has thickened edges which are bent inward and used for the attachment of museles, as is shown by cross sections of this region of the body. A narrow preseutum can he easily distinguished in some species, though in others it appears to be closely fused with the scutum. On each side of the scutum is a membranous area upon which the fore wings are inserted, at the bases of which there are chitinous thickenings for the attachment of muscles and also serving as pivotal points. A small, curved, triangular tegula is present in many, if not all, Terebrantia. Upon its broad edge, next the base of the wing, it is furnished, in Eolothrips, with a row of five or six small, stout spines whieh point directly toward the base of the wing, upon which, very near its hase, there stands a somewhat larger, curved spine which, when the wings are extended in flight, points toward and would appear to engage some one of those upon the tegula. This is a peculiar and interesting structure the purpose of which can only be conjectured. In Thripidx the tegula is present, but I have found no species having the spines fully dereloped, thongh little knobs or vestiges of such structures are present in some cases. The tegula is not always distinctly visible. At each anterior angle of the mesothorax there is a larger or smaller spiracle, which is
usually much elongated and narrow in Terebrantia, while in Tubulifera it is more rounded. In front of the spiracle a narrow plate extends up over the shoulder and meets the mesoscutum. This plate in some ases is only an upturned portion of the broad mesosternum, but in others is distinctly separated therefrom. This plate may be called the episternum, either separate or fused with the mesosternum. Behind the spiracle and below the attachment of the fore wings, there are one or two quite broad skeletal pieces which are rather triangular in shape. The mesostermum usually covers the whole ventral surface of the segment and its edges hend upward at the sides (e. g., Iteliothoips, see Plate XI, fig. 119). In some species, however, it is an hexagonal plate similar to the mesoscutum and but little larger, while the epistermal and epimeral plates are elongated and meet the sternum upon the rentral surface. Upon the median line of the sternum there is in all species, though very weak in the wingless ones, a quite deep chitinons invagination more or less forked and serving for the attachment of strong muscles (Plate X1, figs. 117, 119, 127). These endothoracie structures are plainly visible in most species. The middle legs are inserted far apart at the very hind angles of the mesosternum.
Metuthorar.-This segment is usually slightly narrower than the preceding and gencrally tapers slightly to the base of the aldomen. Its dorsal plates are two, usually distinctly separated: a scutum and a sentellum. On each side of these a membranous strip continning that from the mesothorax, extends backward to the hase of the abdomen. The hind wings are attached quite close to the fore wings and in a similar manner. Near the bases of the hind wings lies in Tululifera a very distinct rounded or oral spiracle. This spiracle is present and risible in many (Uzel says "all ") Terebrantia, but I have been unable to find it in some species: in others it is extremely small and apparently functionless, while in still others it can be distinctly seen. The metasternum is broad and its edges curve upward around the sides of the body. At the front efge of this side lies a narrow triangular plate, the meta-episternum, while the meta-epimeron is here a narrow clongated plate lying ahore and close to the upturned edge of the stermum. The metasternum bears also a prominent endothoracic structure in the middle and the edges of the plates are often bent inward and thickened. The attachment of the abdomen is so oblique that the hind coxa lie beneath the first abdominal segment. The hind coxat are well separated and the stermum usually projects back between them as a distinct lobe or conical protuberance.

Tariution in the structure of the pterothorax in wingless species. The pterothorax is similar in both short and long winged individuals and we may expect to find at times long winged specimens of msually short winged species. In species which are entirely wingless, howerer. or in those one sex of which is always wingless, a marked rariation in

Proc. N. M. vol. xavi-
the structure of the pterothorax is evident in the wingless individuals (Plate XI, fig. 125). The size of the pterothorax becomes greatly reduced in such cases as no great muscular derelopment is needed to move the legs alone and the pterothorax is, perhaps, but little larger than the prothorax. The dorsal plates of both segments lose the usual form and become rectangular and transversly broadened, extending over the membramons space which is usually present along earh side. No traces of wings are present and there is no longer any place for them. As a consequence of the decrease in musculature the endothoracic structures have become very much weaker, though still plainly visible.

APPENDAGES OF THE THORAX: LEGS.

The legs of Thrips are among their most characteristic structures and can hardly be mistaken for those of any other insects, whether short and powerfully thickened or long and slender. They are composed of the usual parts of the insect leg, which may be readily distinguished. The attachments to the thorax are quite far apart and at the very hind edge of each segment. The fore legs are often shorter and thicker than the others and more specialized.

Cora.-This basal segment is large, nsually subconical and quite freely movable. The fore coxa, especially in Phleothripidx, often bear a few short, very stont, sharp spines and one long spine at the outside, but aside from these spines the coxit exhibit little that seems to be worthy of note.

Trochenter.-This is a short, small segment between the coxa and the larger femur, its line of attachment with the latter being often considerably oblique.

Femur.-This, the first prominent segment of the leg, is quite long and more or less eylindrical or fusiform. The fore pair is frequently distinguished by much greater thickness than those of the other legs, (especially in Phloothripidx), the enlargement taking place in the upper side of the base and diminishing toward the outer end. In Chirothrips the lateral surface is strongly chitinized and bent backward somewhat at the tip so as to appear almost tooth-like at that point. In thickened femora, especially, the inner side toward the base is grooved to receive the base of the tibia when the latter is closed inward, and in a few species with this kind of femur the angles here have become sharply pointed and chitinized so as to form two sharp teeth at the tip (Plate VIII, figs. 8!, 90).

Tilbic.-The tibia is, as a rule, about as long as the femur and more nearly cylindrical or often club-shaped in form. It is most slender near its base where it is often slightly bent. At the extremity within, in a few species, the tibia bears an erect, stout, recurved hook or tooth as it is usually called.

Tirsurs.-This is the most distinctive part of the leg. As a mule it is composed of two segments, though in larva and the fore talsi of many species hut one is present. The division between the two is oblique so that the under surface of the first segment is longer than the upper. Both segments are more or less eylindrical. The last segment terminates in a cup-shaped or hoof-like end which has heen mistaken sometimes for a third tarsal segment. Upon the imer side of the fore tarsi are found structures which are nearly always characteristic of families. The Eolothripide, in both sexes and it is stated also in the pupal stage, bear upon the tarsus a peruliar hook-like structure the function of which is not understood. (See Plate I, fig. 9.) The fingerlike hook is bent back upon itself, pointing toward the base of the tarsus and almost toucbes the point of a short, stout spine standing erect at its tip. In many species of Phleothripide. thoneh not in all, there is on the inner side of the tarsus a more or less stout tooth which stands nearly erect and is slightly recurved at its tip, and when this tooth is strongly developed, the tarsus, so far as is known, hat only one segment. The development of this tooth seems also to be in proportion to the degree of development of the fore femmer and its function appears to be to act as a hook in giving a firm hold and thas assisting the little creature in crawling through small places. Some Phleothripida show no traces of such a tooth and all grades of development can be found in different members of this family. Both sexes usually possess such a tooth, though that of the male is sometimes much stouter than that of the female. In the Thripide the tarsi are simple, without either of these structures in nearly all species, only a few having a small tooth.

The tarsi are usually said to be clawless, but I do not consider this to be always the case, for some species have one and some two distinct, apparently movable claws on the sides near the end.

Apines.-Earh segment of the leg may bear numerons spines and some of these may be particularly well developed and worthy of note. In many Tubulifera there is upon the inner and lower side of the femur near its base a slender spine very much longer than any of the other's. The hind tibia in most species of Thripide is furnished with a row of stont spines along the imner side and in many species a pair of similarly stont spines is borne at the tip of each tibia. Other specialized spines are sometimes found.

Bluedder.-This structure, so remarkable and characteristic as to suggest the name Physopoda for the order, is protrusile from the end of the last tarsal segment. It is found in all species and in both adults and young, but its structure and action does not seem to be quite the same in the mature and immature stages.

As has heen said, the end of the adult tarsus is cup-shaped. The wall of the cup is firm and in some parts, especially the underside,
strongly chitinized. Into the mouth of this cup is titted a very delicate, protrusile, membranous lobe or bladder. When the foot is raised or at rest, the bladder is wholly withdrawn into the end segment and becomes invisible, as is the case in a majority of momed speeimens. The end of the tarsus is now blunt and flat and often seems to be minutely haired. The bladder in, however, always protruded and brought into action when the tarsus is put down or brought into contact with an object. The membrane is then pushed out and forms a lobe, larger in many cases than the cup portion which had previously wholly contained it. The mechanism of this complicated structure is very interesting but difticult to study. It has, however, been worked out, partially at least, by both Jordam and Uzel. The following paragraph on this point is gathered from dordanis deseription and my own observations:

Bludder mechenism.-A strong chitinous rod, attached to muscles in the tibia, runs out through the tarsus and ends in the broadened, heavily chitinized under surface of the cup. The end of the plate is drawn out into weak cords rumning to the outer parts of the cup wall. Opposite the chitinous rod lies a double fork provided with a joint. The fork is cut short at a chitinous rod lying in the terminal segment of the tarsus and is movably jeined thereto. Both arms of the fork are connected with the chitinons rod at their base by a tendon. Between the fork and the terminal plate of the ehitinous rod the wall of the cup is usually thin and quite tramsparent, but in Phloothripide especially it is quite strongly chitinized and opautue. Looking down upon a foot that is inactive (bladder retracted) so that the chitinous rod lies along its middle line, the end appears more or less pear-shaped and small. Upon the surface lies the terminal enlargement of the rod. while the double fork occupies the sides. Between the tips of the fork the extremity appears folded in toward the middle. When the foot is brought into action the chitinous rod is draw back somewhat, so that the attached fork is erected and spread out. The reviously invisible bladder is now thrust out from the end of the tarsus. The ends of the fork and the chitinous rod continue into the bladder wall as fine rays. The bladder is elastic and very mobile, easily accommodating its shape to the surface upon which it restr. Looking at a larval tarsus from the side, the chitinous rod is seen to run obliquely from the middle of the tibia to the under wall of the cup. Here it appears to end suddenly without being broadened into a plate as in the adult; still the end of the rod is continued into the wall of the cup as tine rays. The dorsal part of the eup is occupied by a curved claw, the basal part of which is attached to a sort of bracket-like thickening of the wall of that part of the end segment at the base of the eup. Furthermore, the base of the claw is united to the chitinous rod by a sinew, and above the extremity of the claw the tarsus is drawn out into a membranous, longitudinally folded lobe. When viewed from
above, it is seen that the bases of the claws are strongly hroadened within and somewhat less so without, and that the imer prolongations touch and are flexibly joined together. Both claws are supported upon the bracket-like ring at the base of the cop, while the folded membramons wall reaches beyond the claws. The chitinous rod unites near the support with the two tendons coming from the outer projections of the claws. When the bladder is brought into an active condition, the elaws bend ont from each other and the folded portion between them spreads ont, while the distal portion, umseen in the inactive foot, becomes pushed out as the bladder. By a proximal pull upon the chitinous rod the tendons are drawn back and the claws thereby are spread out, moving around the bracket-like support with which they are connected as on a pivot. As the claws are grown together with the folded lohe, the lobe must be unfolded, but this does not explain how the membranons lobe can be protruded as a swollen bladder. If a swollen bladder be pricked or ruptured the blood pours out and the bladder collapses quickly. We must therefore conclude that hood pressure, acting with the mechanism just described, is largely instrumental in the protrusion of the bladder's.
(other orymens of doubtful fienctiom. - In the basal segment of the tarsus or the extremity of the tibia there has been found in a few European species a small. pear-shaped organ which has been considered as a gland, and some have thought this the structure which produced the swelling of the hadders, hut as this supposed gland is much smaller than the bladder which it is supposed to fill, this can not be, and its function remains still problematical.

Near the line of union of the femur with the trochanter. Trybom has found in certain Pheothripida an organ or a gronp of organs which suggest to him the auditory organ on the base of the tibia in some Locustidae. Trybom speaks of ' this structure as an clongated. thinly chitinized area. almost tramsparent. The areas are found on the side of the hase of each femur near the line of its union with the trochanter. They are variable in shape and may be different on the opposite legs of the same pair. In each light area is a row of round structures having a dark point in the center of each.

These peculiar structures are , small and easily overlooked. but Trybom has seen them in many species of Terebrantia as well as Tubulifera, and the writer has seen them in every species in his own collection. It appears, therefore, that they are always present, but as to their function we can only guess.

WINGS.
The wings of Thysanoptera are no less characteristic than are their feet. To be sure each character shown by them may be found in the wings of some other group of insect:; nevertheless the combination of characters found here is unique. They are long, slender, membramons,
fringed and not folded; they have few reins, and upon the hind edge of the hase of each there is a usually distinct lobe or scale. The fore and hind wings are formed quite similarly. When at rest, the wings are folded back flat upon the abdomen, the fore wing covering the hind one completely and the pairs lying parallel in the Terebrantia, while in the Tuhulifera the wings all overlap at their tips so that the full surface of only one can be seen when they are at rest. The wings. are usually about as long as, though sometimes much longer than, the abdomen, but in many Tubulifera they are shorter. The wings of Folothripida are proportionally the broadest in the order, being in the middle about one-serenth as broad as their length. Those of Thripida are much more slender, ranging from one-tenth in the fore wing of Parthenotfrips to about one-twenty-sixth in that of some Sericothrins: the arerage in the species of this family known to me is about one-fifteenth. Three general types of wing are found in the order, each of which is characteristic of a family.

Fimily tupes.-Eolothripide possess wings which are comparatively broad, as we have seen. Their breadth continues nearly to their tils, where they are broadly rounded. (Plate I, fig. 2.) The hind wings resemble the fore wing's closely in general outline and size.

The wings of Thripidæ are distinet!y different from the preceding. Besides being much more slender, they taper from base to tip, where they are sharply pointed, the whole wing heing ustally slightly curved so as to be quite sabre-shaped. (Plate II, figs. 16. 23.) The fore wing of I'unthenththips approaches most closely that of Eolothrips, being broad and straight but pointed instead of rounded at the tip, and the venation is very different. The hind wings are somewhat shorter and narrower than the fore wing:-

The third type of wing (Plate VII, fig. 75), found in the Phleothripidx, resembles that of Eolothrips in being broad and rounded at the end. The hind wing is also similar in size and form to the fore wing. In some species the wing is narrowed in the middle so that it resembles somewhat a shoe sole. Other characters, as renation, fringing, etc., separate them rery decidedly from the Eolothripida.

Tenution.-The renation is even more characteristic of the families than the form of the wings. In the Eolothripidx, the fore wings show the most complex renation found in the order. They are entirely bounded by a strong ring vein and pierced by two longitudinal reins extending from the base to near the tip, where they bend outward and join the ring vein. Four or five cross reins are also present, two uniting each long vein with the ring rein at about the first and second thirds of the wing and one cross rein uniting the long veins before the middle. The hind wings have no fully developed reins.

In the Thripidat the reins are much less prominent, except in Parthenothripe. One or two longitudinal reins are present, but cross veins have rery nearly disappeared, though vestiges of most of those
found in Eolothripide ean sometimes he observed in this family. The hind wings have always one longitudinal vein, but no ring or cross reins.

The wings of Phlœothripide are marked by the absence of reins. In both fore and hind wings alike there is but a partial development of one median longitudinal rein. This is quite strong and marked at the base, but rarely reaches to the middle of the wing before it disappears. There is no trace of a ring vein.

Fringing. - As a rule, fringes of long, slender hairs are borne upon both margins of the wing and so make up for the narrowness of the membrane. The hind fringe is always present, but the fore fringe is nearly absent in Eolothripide, always present in Phboothripidx, and more or less fully developed in Thripide. The front fringe consists of a single row of hairs which, when fully developed, are stonter in Terebrantia than those upon the hind edge, but in Phlcothripide they are similarly developed on both edges. In some Thripida the front fringe is restigial, being very weak and sparse, or it may be entirely absent. On the hind wings the front fringes are more uniformly well developed than upon the fore wings, and both fringes are single. The hind fringe of the fore wing in Terebrantia consists of two rows of hairs so placed that they stand, when in flight, at different angles to the edge of the wing and thus by crossing give mutual support and form it mesh-work which is more strongly resistant to the air. The hind fringe hairs of both wings in Terebrantia are more or less wary or spiral in form while those of the front fringes are straight, as are also both fringes in the Tubulifera. The hind fringes of both wings of Tubulifera are single except that near the end of the fore wing the fringe is double for a short distance. The length of the hind fringes is from two to seven times the breadth in the middle of the wing. Fringes are wanting near the base of the wings.

The method of insertion of the fringes differs in the suborders and is of interest. In the wings of Tubulifera the hairs are inserted directly for some distance into the membrane of the wing, where they gradually disappear. They are so tlexible near the base that they can be bent back along the edge when the wings are folded at rest. In Terebrantia, however, the fringe hairs are borne upon small supporting hases on the edge of the wing and are in general stiffer than are those of Phleothripida. One row of those upon the hind margin is attached differently from the other. The hairs stand upon small, conical, basal enlargements, to which they are attached by a joint so as to allow an easy folding of the long hairs toward the tip. Toward the base of the wing, howerer, the side of the somewhat conical support is drawn out into a point, which prevents the folding of the hairs toward the base and keeps them at nearly right angles to the edge of the wing during flight.

Spines upon wings.-In the Terebrantia the entire upper surface of the wing is thickly set with microseopic spines which are wanting in Tubulifera. Besides these there are usually borne along the longitudinal and costal reins some larger, prominent spines, which vary in number, size, and arrangement sufficiently to give in many species of the Thripidae characters of specific and generic value. Those borne upon the costa appear intermixed with the fringe hairs, though really they are not in the same plane. Their' development seems to be in inverse proportion to that of the fringe, so that when the latter is strongly developed the costal spines are not larger than those upon the other reins, but when the fringe is weak or absent the costal spines develop greatly and to some extent replace it.

In Eolothripide the spines upon the reins are always quite small, while the front fringe of the fore wing is wanting. In Phleothripide there are msually three stout, erect spines near the base of the vein in the fore wing.

Tuking tight.-It has been frequently noticed and mentioned that many of these insects throw up the end of the abdomen, much as do the rove beetles (Staphylinidr), as though threatening to sting. This movement is made to assist in the proper spreading of the wings for flight. When at rest, the fringe hairs lie along the hind edges of the wings and are more or less interlaced. As the abdomen is raised, the wings are drawn down over its sides in such a manner as to make it appear that the spines upon the sides of the abdominal segments are used to some extent as a comb by means of which the hairs are straightened out and put in their proper position. This operation often has to be repeated several times before the wings are hrought into a condition for suceessful tiight. The power of springing, possessed hy some species, also seems to be of assistance in taking flight. These statements apply only to Terebrantia, however, no observations having been made upon Tubulifera.

Coordinution of the wings.-This is accomplished in a manner strongly suggestive of the Hymenoptera, though the structures concerned are less highly developed. Upon the costa of the hind wing, near its base, stand about five short spines in Terehrantia and two or three in Tubulifera, which are hooked at their tips. When the wings are spread in flight these tiny hooks engage a membranous fold on the underside of the scale of the fore wing. Beyond these small hooks stands a single stouter spine which also forms a hook. From the hind angle of the seale of the fore wing proceed two long, stont spines, standing so closely together as to often appear like one, and these engrage the solitary stouter hook on the hind wing. Thus united the wings move together, but as the comection is so near the bases of the wings it can not be very strong.

Recluction of the wings.-It is an interesting fact that in this order
the wings may be fulty developed, reduced to short pads not reaching beyond the thorax. or even entirely absent. Intermediate conditions. are rare, though I have found a few specimens in which the wings were about one-half their normal length and entirely functionless. These three conditions may occur even in the same speries (Chiorotherips manicatus Haliday). When the wings are reduced, the little pads are rounded or oval in shape and are laid closely upon the thorax. The fore pad is larger, bears a few small spines, and covers the spineless hind pad completely. No fringes are present, but the fore pad has a distinct seale. Trybom, who has made quite an extensive study of this sulpeet (425), recognizes eight classes into which these insects may be divided according to the varying conditions of the wings.

1. Both sexes entirely wingless.
2. Males and some of the females wingless.
3. Males entirely wingless, but females with normally dereloped wings.
t. Long winged and wingless individuals of both sexes occur.
4. Males and a majority of females with reduced, but a number of females with normally developed wings.
5. Both sexes always short winged.
6. Long winged as well as short winged individuals of hoth sexes occur.
S. Both sexes always long winged.

The appearance of a long winged generation following several which have short wings is strongly suggestive of a similar condition among the Aphida. In at least some species of Thysanoptera where this condition obtains the summer generations develop long wings while the fall generations are almost entirely short winged, so that nearly all the hibernating females have only wing pads. Loug and short winged forms commonly alternate in the same sex, but short winged and entirely wingless forms of the same sex are not known. When only one sex is wingless it is the male. Wing pads are usually rather difficult to see, but their presence or absence can be deduced from the structure of the thorax, even thongh they are themselves invisible.

ABDOMEN.

The form of the abdomen varies from cylindrieal to elongate-oroid. In Terebrantia the segments are nearly cylindrical in cross section, while in Tubulifera the abdomen is flattened, giving the cross section an elliptical outline. The terminal segments especially are differently formed and characteristic of the suborders. The abdomen is always composed of ten segments, of which the second to the seventh. inclusive, are similarly formed in nearly all cases, while the others are variahle and bear the most distinctive characters of the abdomen.

Terchrantia.-In the Terebrantia each segment except the first and the last three is composed of a broad dorsal plate reaching to the sides, a somewhat narrower rentral plate, and one or two rery narrow plates on each side comecting these. Jordan states that one of the two pleural plates comes from the ventral, the other from the dorsal plate, but the dorsal pleural plate is sometimes wanting or indistinct. The dorsal plates of segments two to seren inclusive, are usually strengthened. especially in the Terebrantia, by a chitinons ridge along the inside somewhere in the anterior third, and this appears extermally as a darker, narrow stripe on these segments. The first segment has a well-dereloped dorsal plate covering the hind part of the oblique metathorax. and small side plates are present in some cases, while the rentral plate is so short and small as to be easily orerlooked. In the females the rentral and pleural plates are wanting upon segments nine and ten, the broad dorsal plate bending around the sides and approaching beneath to form the sheath for the ovipositor. In both sexes all the segments are similar except the last two or three, which in the females usually form a more or less sharp cone, while in the males, as a rule. the end is bluntly rounded: only a few species are formed alike in both sexes.

Spinex.-Each segment bears, as a rule. but few spines, which are small upon the anterior segments, but increase in size and prominence posteriorly. These are most prominent upon the sides of the segments and especially around the last two, where they are called anal spines and are frequently very long and stout. In some species, as Quaintance has observed ($45 t$), these stout anal spines are the weapons of offense and defense.

Tubuliferu. - In this suborder all but the first and the last one ortwo segments are formed alike. Each is composed of only a dorsal and a rentral plate joining at the sides by an indistinet suture. The rentral plate of the first segment is ouly slightly, if at all, developed, while the terminal segment appears to be a simple cylinder or tube and is formed alike in both sexes. The dorsal plate of the first segment, in some species, is drawn out anteriorly into a rounded projection, attaching to the metathorax, and on each side of the projection is a separate side plate. The arrangement and relative development of the lateral spines is much the same as in the Terebrantia. As a rule, upon the dorsal plates of segments two to seren inclusive, on each side at abont onefourth the cross diameter of the segment from the edge, there stands a pair of peculiar. inwardly bent, acute spines, and outside of these there is frequently a segmental row of much longer, straight, blunt spines. These dorsal spines appear to serve entirely for the confinement of the wings when at rest. The last segment bears at it tip a circlet of long, slender hairs, ustatly as long ats, or longer than, the segment itself.

Stigmatn.-EEither three or four pairs of stigmata are present in Thysanoptera. In the adult they appear constantly at the anterior angles of the mesothorax, and on the sides of the first and eighth ahdominal segments, while the fourth pair, always present in Tubulifera and sometimes distinguishahle in Terehrantia as well, occur's close behincl the attachment of the hind wings. Uzel states that four pairs of spiracles are present in the Terebrantia. Ths is surely often the case, but the metathoracic pair is very small, and in some species I (an not tind it even in specially prepared mounto, and in some cases where traces of the stigma can be found, I am convinced that it is vestigial and really functionless. The mesothoracie stigma is frequently elongated dorso-ventrally, sometimes being very narrow.

In the larve the stigmata are situated at the front angles of the mesothorax and upon the sides of the second (instead of the first) and eighth abdominal segments.

The structure of a stigma is peculiar. In a surface view at the sharpest foctls, upon an anterior abdominal stigma of, e. g., A fmy ho thripsestriuthe, cleared in calletic potash, the stigma appears to be made up of a number of irregularly polygonal, cell-like bodies, separated from eath other by dark lines aml each cell showing one or more dark spots near its center. In fornsing down onto its surface, its appearance changes quite strikingly. As it first comes into view, though before it is clearly seen. it appears as a dark field with quite regular, small, light spots, the dark lines giving a reticulate appearance. When a little more nearly in focus, the cells appear dark, while the central spots and the intercellular lines and angles are very much lighter. Brought into sharp focus, the cells are seen to he more irregular than they appeared at first, the surface appears light colored. whereas formerly it appeared dark, while the intercellular lines and central spots have now hecome dark (Plate X. fig. 112.) This reversal of the light and dark parts is peculiar and very noticeable. On one side of the center a larger, rather indistinct, rounded area can matly be seen, which is the bulbous enlargement at the end of the trachea opening br a quite large orifice to the exterior. A cross view of a stigma (Plate X, fig. 113) shows a remarkable structure. The cellular areas are now found to be mushroom-like bodies with slender stalks, standing with their heads close together. These are quite strongly chitinized and dark. Whether the little air chambers between them comect in any way with the trachea has not yet been determined.

SEXUAL ('HARACTERS: TEREBRANTI.A.
Femmle mipositor.-The most prominent external sexual character of the female is the oripositor which is attached to the ventral side of the eighth and ninth abdominal segments (Plate XI, fig. 121) and is
plainly visible through the body of the insect. It is composed of four distinct plates or valves, two of which, forming the under or anterior pair, are attached to the very narrow ventral plate of the eighth segment and two, forming the upper or posterior pair, are attached to the sides of the ventrally extended dorsal plate of the ninth segment. The oripositor as a whole is curred either upward (Eolothripide) or downward (Thripide) and terminates in a rery slender, sharp point. The valves lie very closely together, but their imner surfaces are grooved, forming a passageway for the egg. The two plates on cach side are fitted together in such a way as to slide back and forth upon eath other without being displaced. The upper edge of the lower plate is grooved and into this groove fits a ridge or tongue formed by the lower edge of the upper plate. The upper edge of the upper plate, except at its base, is fitted with sharp, saw-like teeth pointing toward the base of the valre. The lower plate is provided with similar teeth on the under side of its distal third, while the middle third bears a number of peculiar, broad-cutting teeth. The oripositor is morably connected with the abdomen by a number of small supporting plates or levers which also assist in its manipulation.

In at least two species of Thripide known to me, the oripositor does not appear to be functional though it is plainly present (Chirothrips olesuls and Thripsperplesus.

When not in use, the oripositor is drawn up close to the hody and is received into, and entirely enveloped by, a membranous sheath along the last two segments which is made possible by the absence of the rentral plates at this place. The sextal opening is between the eighth and ninth segments in all Terebrantian females.

As a rule the conical form of the tip of the abdomen also indicates a female. In many of the light colored species, just in front of the hase of the oripositor, is a plainly visible internal organ which has sometimes been called the seminal receptacle. It usmally appeass as a small spherical or romnded body of an orange or brownish color, agreeing closely in this respect with the color of the spermaries of the males in species where males are known. This organ presents the same appearance, however, in certainly unfertilized females of hisexnal species, and it is also always present, having the same size and color in several species known to me in which the males are extremely rare or possibly wanting altogether. Certainly aseminal reepptacle can not be functional in parthenogenetie species, yet I have foumd this organ constantly present through eight or ten generations of a species bred in the laboratory where males were never produced.

Male.-Males are, as a rule, considerably smaller than the females. The abdomen is usually bluntly rounded at the end instead of sharply conical, though a few species resemble the females in this respect. The stoutest spines are usually at the sides of the ninth segment. In

Folothripide this segment is much larger than the others and is drawn out at its hind angles into hooksand processes which apparently assist in copulation. The sexual opening is between the ninth and tenth segments, and frequently from this point there protrudes more or less of the retracted copulatory apparatus, which is usually entirely drawn into the ninth segment through the walls of which it can be more or less distinctly seen. Three separate outer parts, which are strongly upcurved, can he seen proceeding from a complex bisal part and the eutire apparatus is protrusile. Within the abdomen the two elongated, irregularly pear-shaped, orange or brownish colored spermaries are plainly perceptible, lying usually in about the seventh and eighth segments. Upon the rentral surface of the second to the seventh abdominal segments, inclusive, in many species there are distinct rounded or transversely elliptical depressions found only in the males. Males are often lighter in color and quicker in movement than the females.

TUBULIFERA.

Femele.-The sexual characters of Tubulifera are much less distinct and numerous than are those of the other suborder. The end of the abdomen is tubular and the sexual opening is between the ninth and tenth aldominal segments in both sexes. In this region are also found the strictly distinctive characters. In the female the basal edge of the tube is regular and entire. Near the hind edge of the ninth segment below there is a short, strongly chitinized rod (Plate X, fig. 115) which is dark and plainly visible in light colored species, but when the body at this point is nearly opaque, the rod ean not be seen and the question of sex is often in doubt.

Mate. - The male is usually smaller and more slender than the female, the sixth, seventh and eighth segments of the abdomen being noticeably narrower. The base of the tube is cut out below in the form of a semicircular noteh (Plate X, fig. 114), which can nsually be plainly seen except in very dark specimens, and through the opening formed by this notch the sexual apparatas can be protroded. The structure of this apparatus is much the same as in the Terebrantia and in light colored specimens it can be seen wholly retracted within the ninth segment. In some species this segment bears a broad scale at the base of the tube. In a few species the sixth segment hears on each side a thick, fleshy, unjointed appendage. The males in many species have more strongly thickened fore femora and stouter teeth upon the fore tarsi than do the females.

Copulation. - This I have rarely observed, and therefore the following statements are mamly gathered from Jordan's article (306).

In the Tubulifera the male rests upon the back of the female, and holding firmly to her thorax by his legs, he places the ventral surface of his abdomen along the side of the abdomen of the female and bends
the extremity under the abdomen of the female, so that the rentral surfaces of the last segments are toward each other. The copulatory apparatus of the male is then pushed out, while the female bends the tube upward so as to leave the sexual opening free. Copulation lasts for about half a minute, when the female begins to move and the male leaves her back, but the connection is not at once broken, and the stronger female drags the attached, struggling male behind her for some distance. One male fertilizes a number of females successively. In one case Jordan states that a male of Pherenthrip.s bremeen . Iordan, in one-fourth of ath hour, fertilized six females, and his spermaries were still about half tilled.

In the Terebrantia the males are carried around upon the backs of the females and the union takes place in much the same manner as has just beeu deseribed for the Tubulifera.

DEFORAITIES.

Slight deformities are by no means rare. The most common form consists in a reduction in the number of segments in one or hoth intenna, brought about, in most cases, by the fusion of two or more segments at the end, though intermediate segments are sometimes wanting. It frequently happens that the antemna with fused segments is scarcely shorter than the normal one. Only very rarely does it appear that a reduction in number is the result of injury, though this would seem very possible. So far as is known, an increase orer the normal mumber by a division of segments never takes place. Sometimes the wings are so deformed as to be useless. Deformities in the abdomen are very rare, but I have found two cases. One in which the posterior segments were constricted being abruptly smaller than the preceding, the other with a half segment wanting on the left side at about the middle of the abdomen. The right half of the segment was wedgeshaped, reaching in to the median dorsal line and giving the abdomen a corresponding erook at that point.

REPRODUCTION.

The method of reproduction in this group is of interest and also has an important boaring upon its distribution. So far as known, it is always oriparous and sexual, but two distinct forms are common in most species.

Bisexuel reproduction.-This is the normal and most common form, but the two sexes are not found in anything like equal proportions, as females are almost always more abundant than males. This may be the case and reproduction yet be entirely bisexual, as in some species, perhaps in all, one male fertilizes a number of females. In a few species the males are found abundantly throughout the year; in others they are abundant only at certain seasons; in others males are rarely found at
any time; in still others, while the females are very abundant, males are unknown. The explanation for the relative searcity or absence of males is found in the second methorl of generation.

Chiscruch roporluction.-Parthenogenesis is the nisual mole of reproduction in at leant ten species, all Terebrantia, and probably occurs rery frefucntly in many others, thongh positive statements can not be made upon this point until more cxtensive collecting has been done and life histories have become better known."

It seems that parthenogenesis must take place to some extent in those species in which the mates are con maratively rare or are active for only a short season. However, no su th thing as a regular altermation of gencrations, as in Aphidae, is yet known to exist among Thysanoptera. In his studies of Parthenots ijes druceener Jordan found that the normal method of reproductio in warm greenhouses was unisexual, while on plants standing in a ool room an abundance of males was developed, and this condition lasted in the cool room throughout the winter season. The males of Aptinnthips rufus have been found only at harying time, and then only very rarely.

dissemination.

It has already been noted that in most species there appear for some part of the season, in some generation or in one sex, individuals hearing fully developed wings, and we can not doubt that the wings play a large part in the distribution of the species. Certain it is that the power of flight is greater than would seem possible with such delicate wings as these insects possess. After harvest or toward autumn some species fly in large numbers, and in some instances have caused considerable amoyance by entering houses for hibernation. Winds may easily carry them for considerable distances, and when so seattered it is evident that their power of parthenogenetic reproduction is of great assistance in the estalbishment of the species in a new locality. Species living moder the bark of trees growing upon the banks of streams are probably often carried for long distances on wood floating in the water, as some species which have been observed are found to endure a large degree of moisture and even submersion for some time without injury, and moist, decaying wood is their normal food. Species living upon cultivated plants, as in greenhouses, have doubtless been disseminated in commereial ways. Strange as it may seem, a species which is entirely wingless (Aptimothrin), mfius (imelin) is one of the most widely distributed. It is hard to believe that this species can have uttained its present distribution in both Europe and America through the slow method of crawling.

[^1]Perhaps it may not be too much out of place here to speak more particularly of other movements aside from flying. The Tubulifera are very slow and deliberate in their movements, both in crawling and flying, and they never spring or run. Terehrantia vary in this respect, though in general they are much more active, and many run quite rapilly and take flight quickly. Some possess a power of springing which is well developed and often used in place of flight. The abolomen, head, and prothorax are raised and the little creature balances itself by its middle legs. Then suddenly the upraised parts are hrought down together and the insect is thrown a considerable distance by the force of the contact.

DEVELOPMENT.

Oriposition.-As may be inferred from what has heen said of the sexual apparatus of the two suborders, each has its own method of oviposition. The Terebrantian female cuts a slit with her saw through the epidermis and deposits her egges singly in the tissue of the plant. The process of oriposition is as follows in Amphothrips striutus and will doubtless hold in most points for the group:

The abdomen is raised somewhat and the oripositor is let down from the sheath till it is nearly at right angles to the body. The abdomen is arched to bring the weight of the body to bear upon the slender saw, the valves of which are then moved back and forth upon eath other by powerful museles in the ninth segment. The toothed blades are gradually worked down somewhat obliquely into the tisisue, and when the slit is sufficiently large there may be seen suceessive contractions of the abdomen as the egg is pushed out hetween the ralves of the oripositor and under the epidermis till it is nearly concealed. The entire operation requires about one and a half minutes, and upon its completion the female moves off a short distance to rest or feed. Occasionally the oripositor becomes so firmly wedged in the plant as to hold its possessor prisoner for some time, frequently until death results (46 :9).

I feel sure that Thrips perplexus and Chirothrips obesus will be found to deposit their eggs externally.

The number of eggs laid by a single female has been observed only in the case of Amuphothrips striatus, from a number of which an arerage of from 50 to 60 was obtained, the maximm aremge from a lot of females being 72 . These ohservations were made in the laboratory upon females confined in bottles. The percentage of eggs which hatehed wats also observed in this species and was found to vary in the laboratory from 35 to 4^{0} per cent. It seems very probable that the artificial conditions under which these experiments were made must have in this case greatly reduced the percentage that hatched below the normal.

Tubulifera deposit their eggs extemally, either singly or in groups, upon leaves and flowers or under bark, ete, according to the ir habitat. The period of oriposition in all species in this order is cquite long.

Eyy.-The egges of Terebrantia are more or less elongated and slightly bean-shaped. They are colorless, delicate in structure, and no micropyle is apparent. The position of the eggs in a thin leaf is casily seen upon holding the leaf before a bright light, when they appear as brighter spots in the darker green tissue of the leaf. Eggo are laid in almost any green part of the plant, but not in the petals of flowers.

The egg* of Tubulifera are of an elongate-oral shape, attached with the long axis perpendicular to the surface, and have at the free end a thickening of the chorion with a mirropyle in the middle. The eggs vary from yellow to browni.h in color.

Embryelimy. - The derelopment of the embryo can be observed in the translucent eggs of Terebrantia. Varions writers agree in stating that the germ band is immersed. Before revolution the appendages of the embryo lie along the convex side of the egg, after revolution along the concave side. The length of the egg stage varies considerably in different species and, even within the same species, according to the weather conditions. So far as life histories are known, this stage appears to last from three to fifteen days in Terebrantia, but no record is found upon this point for the Tubulifera. The pigmented eyes of dereloping embros are particulaty prominent. If the egg hed dries the egg is quickly destroyed, hut if moist, even though decaying, the development continues.

Emiruencor of the linrow. When ready to emerge, the young Terehrantian larra breaks through the tender chorion and pushes up through the slit in the epidermis made for the insertion of the egg. The larra works its way up till all but the tip of the abdomen is free, but remains supported hy the tip in this upright position until the antemae and legs have separated from the body, to which they are at first closely applied, and have become sufficiently dried and hardened for use. It then falls formard onto its feet and is ready to travel or to feed alnost immediately. No observations have been found on this point for the Tubulifera, but just as their eggs are laid singly or in groups, no also do we find the larrae.

Lerveal stenf. - The length of the larral stage varies with the species. and the statements recorded place it at from five to forty days.

When just hatched the head of the larva is very large in propertion to the body and the month parts are essentially like those of the adult. The thoracie segments are subequal. The abdomen is strongly contracted and very rongh. As the larva grows the thorax and abilomen enlarge noticeably, while the head shows little change. In some species (Iheliotluipss) the aldomen hecomes'strongly distended and shining as though under considerable pressure, and a globule of fluid exere-

$$
\text { Proc. N. M. vol. xxri - } 02-8
$$

ment is frequently held by the hairs around the amus. The larvae are less active than the adults and have no power of springing. The larral antema always has fewer segments than the adult. In Phloothripida the number is constantly seren. Thickened femora and tarsal hooks do not occur, the tarsus appears to be one segmented, and claws may or misy not be present. The structure of the foot is much more distinct tham in the adult. The eyes are not compound, but composed of a few separated facets, which are strongly ele rated and always circular in ontline. The mumber of facets increases in successive molts, but the rircular form is retained. The radiments of the ovipositor or genital apparatus appear on the under side of the eighth and ninth segments as indistinct lobes. The food habite of the larvar are just as raried as are those of the adults, and some species are also found uron the roots of plants.

Mewtw. From two to four molts appear to oceur while in the larval stage, the last marking the change to the pupa. The chitinous covering of the internal mouth parts and of the hadders can be distinctly seen in the cast skin. When larve have become full grown they cease to feed, become restless, and seek some very secluded place in which to molt. In this search they are so successful that in many speries pupar are hard to find.

Tymph, or I'upu. The metamorphosis of Thysanoptera is peculiar, for thongh complete in many respects, it is much less so in others. Two stages are distinguishable while in the nymph condition. After the last larval molt, the insect still retains its larral appearance, the antemas are extended, and the pro-nymph is moderately active. The wing pads are partially developed, extending to ahout the second abdominal segment, and the begiming of the formation of the adult appendages can be seen. After another molt, the true nymph stage is reached and the amimal remains quiet unless disturbed, when it is capable of slight morement. No food is taken during this period. The antemae are laid back upon the head and prothomas; their segmentation has become indistinct and the adult antennat "an be seen within the nymphal skin. The number of facets in the eyes greatly increases, producing the adult condition. The legs are inclosed in loove sheaths and the wing pads reach to and from the sixth to the eighth segments. The pads extend oblifuely outward along the sides of the hody and do not cover each other. The fringes appear along the edges of the forming wings, the fore fringe being directed toward the tip and hind fringe toward the base of the wing. The forming lohes representing the oripositor elongate, and those on each side orerlap hut remain separate. Within them develop the pointed valves of the adult oripositor, which now extends to the tip of the ahdomen. The development of the male genital apparatus takes place in a very smilar way to that of the oripositor of the female. The nymph stage
is passed in some secluded place. pupe being found in the loose soil about the base of the plant, in the leaf sheath, or some similarly protected place, and many have been recorded as transforming in galls. When these changes have been completed, another molt takes place and the adult emerges.

The most noteworthy points in the metamorphosis may be summarized as follows: The larva resembles the adult in general form and in mouth parts: wings are developed in external sheaths; the transitional stage betreen lary and adult is quiet, and during it no nourishment is taken. The metamorphosis is therefore intermediate between complete and incomplete.

Ifibermution.-Thysanoptera pass the winter in either larval, pupal, or adult stages. Many species, without doubt, hibernate in very nearly the same places in which they have fed. The bark-inhabiting forms remain in such places. together with many of the leaf forms which migrate onto the trunk. The dried stems of flowers and grases shelter many species, while many of the leaf-inhabiting forms fall to the ground and are among those which may he found under fallen foliage. in moss. etc. Lichens and fungi shelter some as winter guests, while dead grass and turf contain many forms. It appears very probable that some of the larre which have been found upon the roots of plants were hibernating there rather than feeding thereon, as has been -upposed.

The hibernating individuals appear to be able to withstand extreme degrees of cold and moisture. I have brought in a number of species gathered by pulling the frozen grass from hare mowings in midwinter after a temperature of -21 F . Upon being brought into a warm room, they very soon became active and ran about.
Thrips emerge from hibernation very early in the spring, and as Coon as their normal food plants begin to grow most of them are in a condition to deposit eggs for a new generation, which in some cases in Massachusetts hatel during the latter part of April or the first of Mar.

Length of life.-Few olservations have been recorded upon this point, but it seems improbable that even the longest lised exceed a ingle year. Among those species which produce several generations. n a season, the hibernating individuals must live for at least seren nonth, in the northern United States while the summer generations tremuch shorter lised. Their age however. as a rule. considerably xceeds the length of the life cyele, for oriposition is a slow proces. and in Ammphothrigns strintus is known to extend over a perion of ive or sin weeks. As a result of this there is an indistinguishable werlapping of broods. I have kept a female of a midsummer genration of 1 . strintus confined in a bottle in the laboratore for almost ive weeks. This species has eight or nine gencrations in al semom. and maty therefore be expected to be one of the shortent lived in ummer.

Small and apparently insignificant though these insect are they can. not be disregarded from an economie stamdpoint. Only a few species, to the sire, must be considered as decidedly injurious, but these are widely apread and hard to control. Doubtless much damage, really cansed by these tiny foes, has been attributed to more conspicuons but less injurious insects. The most important species in this country belong to the family Thripidæ. The economic importance of each of these species is considered in comection with its description, but there are, however, some general points worthy of note which may be eonsidered together here.

Fecting ladits.-Thrips are found upon most flowering and some fiowerless plants. The general mode of feeding is the same throughout the order. The green parts of the plant, chiefly, are punctured by the piereing month parts and the sap withdrawn therefrom by suction. The emptied plant cells become white and shriveled as they dry ap and the inseet, standing usually parallel to the reins of the leaf, moves on to fresh cells. The traces of their feeding are thus left in irregular streaks of dried. whitener rells. Behind them, as they feed, they leave rows of dots of dark colored exerement, which, it seems, have sometimes been mistaken for eggs.
()n flowers Thrips are most ahondant in summer. Burmeister states that the nectar of flowers furnishes them with nourishment, and Pergande has expressed a similar opinion (219): but this does not seem to me to be the case, as when present on flowers they are found sucking silp, not nectar. They feed to some extent upon the petals, but not so freety as upon the green parts. The immer surface of the sepals is a farorite place for feeding and oriposition. The essential parts of the flower come in for their part of the general attack and it is just here that the greatest injuy to the plant is catused. Injury of this sort has heen reported, especially upon strawherries by Quaintance (4.54), and upon apple and other fruit hossoms hy Osborn (218,223 224), in which cases they cansed so much injury to the styles by theis punctures as to prevent fertilization and the setting of the fruit. (Ser Euthrips tritici, p. 152.) Probably Enthrips tritice and Thrips tulrect are guilty of most of such injuries. Matly has recorded a very simila injury to cotton bolls by an undetermined species of the family Thri pidae (3+1). Many other flowers though perhaps of less economi importance, are similarly attacked. Flower species feed also upor leaves.

On the leaves of plants and trees may be found a large varicty o species. most of which feed mainly upon the mader surface of th leaver, probably chictly for protection from sm, rain, and enemies
though it is also possible that more tender tisisues may be an attraction. Such species aroid the light and, if a leaf be turned over. the insects will move around to the under side again. The constant surking of myriads of larre and adults soon canses the feeding ground to wither, the leaf becomes cnerusted with dead cells and dark felored spots of exerement and it is not long before its death results. U'nlesis disturbed, most species do not travel much, and thus in time there appears to be something of a colony feeding around the place where the mother hats fed and deposited her eggs. Though many plants thus suffer from the destruction of their leares, the onion seems to bee most sererely aftlicted. (See Therips taluci, 1. 183.)
(irasses and cereals may be included in a third class in which the mature of the injury is somewhat different. Besides the abstraction of sap from the leaves of these plants, Thrips canse a greater injury by attacking the tender axial stems, thus cutting off directly the supply of sap to the head, which therefore fails to bear fruit and may he entirely killed. This is the waty in which "Silver Top" is eallsed, and it is impossible to extimate with any degree of aceuracy the damage which results to the hay crop. Besides working in this way, Thrips are charged with attacking directly the growing kernels of cereals. In the case of wheat, rye, oats, etc., they suck the mutritions milk directly from the growing kemels in the car and produce an ahortive condition of much, if not all, of the bead, which is then called "pungled."
(ireenhouse speries appear to he becoming more numerous and more injurious each year. The principal injury here is done to the leares. and nearly all kinds of greenhouse plants are subject to attack. Thrips tabuci, which has recently come into prominence. especially in curumber and carnation houses, has an unusnally wide range of food plants. It has already proved to be a serious pest, capable of the complete destruction of a crop, and is exceedingly difficult to control.

BENEFFICIAL FORMS.
Preducous Thripw.-The late B. D. Walsh once expressed the opinion that Thrips "are generally, if not universally, insectivorous, and that those that oceur on the ears of the wheat, both in the United States and in Europe, are preying there upon the eggs or larrar of the Wheat Midge (Diplowis tritici), and are consequently not the foes, as has been generally imagined, but the friends, of the farmer" (127 and 132). Such an opinion from so eminent an entomologist is likely to have some basis in fact, though we question whether his condlusion is even usually correct. Thrips have been frequently found in the galls cansed by other insects, either with the makers of the gatls or alone. and the conclusion has heen drawn, though frequently, we suspect, withont a direct observation to that eflect, that the Thrip) were preying upon the makers of the galls. Walsh also writes that he has
" found Thrips preying upon the gall-making larvae of more than twenty different galls, so that there is now no manner of doubt in my mind that Thrips is a true camibal insect" (132). All recorded obserations which I have seen seem to agree that such gall-frequenting forms belong to the Phloothripide, and in very many of the cases noted it is said that they are in the pupal stage (123).

It seems to me entirely possible that in many cases their presenee in the gall may be incidental, they having entered it for protection. It is impossible for Thrips to make for themselves an entrance into any closed gall, aml when present in such it can only be after the exit of the gall maker or some parasite upon it, so here certainly the Thrips is not predaceous. Furthermore, it does not seem improbable from what we know of the food habite of the Tubulifera, which feed mainly upon leaver or decaying wood or fungi, that they may live peacefully in company with the true maker of an open gall which they can readily enter, finding there the same farorable conditions for ahmond food and a secure retreat as does the gall maker. Phylloxeragalls have often been found to contain Thrips, hut the same doubt exists as to the real purpose of their heing there. Walsh states that he has found six or seven red Thrips pupa in nearly every gall of Phylloweru reryur-folite. This observation shows plainly one object for which these insects seek out and enter galls, as a safe refuge during pupation. and this will account for the frequent presener of larve and adnlts in both inhahited open galls, as those of Phylloxera, and deserted closed gatls, as those of Cyipida. It may he true that Thrips prey upon the gall makers. hut further observations upon this point are desirable before we can fully acerpt that conclusion.
"Thrigs plyyltorectas" of Riley"s mamuseript (one of the Phleothripide) is said by him to "do more than any other speecies to keep the leaf-inhabiting grape Phyloxera within bounds" (165). A species of Phlouthrip, has heen observed destroying eggs of the Gypsy Moth (35.3).

Some species of Thripida have heen observed feeding upon other insects and are undoubtedly beneficial. Thripse 6 -momentutus has been repeatedly observed feeding upon "mites" or "red spiders," and other species have been said to do the same. Riley observed a Thrips larva feeding upon the eggs of the Cureulio in Missouri (143a and 144). Thripse trifusciatus Ashmead is apparently predaceous and was olserved feeding on the cotton Aleurodes. (Aleurorlex yossuypii) in Mississippi (38ti). I have oceasionally noticed that under the influence of confinement without plant food Anuphothrips striutus. which is certainly normally herhivorous, becomes cannibatistic and will feed upon its own species.

Flower fertitizens.--It is rery probable that a few flowers, of which the "wild pansy" is one. are fertilized by Thrips, although such a relation must be exceptional. Few flowers are adapted to thus profit
by the presence of Thrips, as their action would tend almost entirely to self-fertilization of the flowers, which Nature does not generally approve. Therefore 1 believe that their value in this way must be very limited.

NATURAL CHECES.

Insects and Actri, cte.-The most important insect enemy appears to be Triphlep) insiditeses. Say, which is very common on flowers and may often be found with a Thrips impaled upon its rostrum and held in the air while the captor sucks the juices from the hedy of its victim. The eggs of Triplleps are laid in a similar manner to those of Thrips and the larve of the former also prey mpon the larve of the latter. The length of the life rycle of Triphleps is about the same as that of Thrips. Megillw meculatu also devours Thripes in great numbers when both are aboudant. Chrysopun and sypphow larvae have been found feeding upon the larvae of Thripse tulurei. Herger has recorded Scymmus ater, Gypophamat mancol, and some fly harie as preying upon them, and Uzel has found Triphlops minntualso.

I have frequently found amphethripes strintux bearing one or more small. sarlet Acari (probably the larvie of a Timmbictiom) attached to some membranous area of the body.

Both Uzel and Quaintance have found the eggs and adults of Nematode worms in the bodies of Thrips, Uzel recorling orel 200 worms from one specimen.

Plant purrasites.-Thaxter (297) has taken Empusa (Entomuphthopre) sphacrosperma Fries from a species of Thrips which it was destroying in larval, pupal, and adult stages. Pettit has found in Michigan another parasite which he thinks will prove to be a (regarinid (464). It was most abundant in the moist breeding cages, (anising the insects to die and turn black. I have rarely found a fungus growing in a deal specimen which appears to be a spectes of Macerospurimem, but it was not possible to tell whether the fungus cansed the death of the insect or came in later.

Rain.-Of all the natural checks, none can compare in efficiency with a bard dashing rain. It has heen noted that Thripe tubaci and Amphothrips strictus, which become extremely abundant during hot, dry weather. disappear almost entirely as soon as the heary showerof madsummer begin, and as long as such showers continue at frequent intervals the Thrips do not again become abundant. The same result will probably be found true in most outdoor leaf-inhabiting species.

ARTIFICLAL CHECKS.
These fall naturally into two groups, insecticides and cultural methods.

Insecticides.-So far as we know, no attempts to control Thrips by means of insecticides have been made outside the United States. Here
each of the three most important economic species, Thriys tabuci, Euthriges tritici, and Amphothrips striutus, has been experimented with consilerably. Webster recommends. for Thripes tubuci in the fich. graying thoroughly with 1 pound of Standarel whale-oil soap in s gallons of water ($\pm 7 i 5$), and he says also, "The grassy borders of ditches have been sprayed with kerosene with excellent results." Quaintance (tat) tried many insecticides for Thrijs tubuci and Euthripss tritici in Florida and found that "rose leaf insecticide" -1 pint in 8 gallons of water-killed from 65 to 70 per cent of the insects, and was the most successful of any thing tested. For Thripst tubuci he recommend. " whale-oil soap (Anchor hrand), at the rate of 1 pound of soal\} to t gallons of water." or "rose leaf insecticile at the rate of 1 piut to t gallous of water."

Sprats: mist be rery thoronghly applied to do even fair service, and ditches and margins around fields, as well as the ground between rows. should be treated also. Even with the most careful treatment many of the tiny insects will escape the spray, and the embedded eggs are entirely unharmed. Therefore, spraying, to be at all suceessful, must be repeated after a short interval. It must he admitted that at best spraying is an unsatisfactory remedy: still, it is perhaps the best method we know of at present for field work.

In greenhonses spraying may be more successiful than in the field. but fumigation methods are here preferable. These also must be repeated in abont a week to be successful. The most satisfactory results have here been obtained by the vaporization at night of 20 ce. of " Nikoteen" in $\overline{5}$ " ce. of water for 5.100 cubic feet of space. This treatmont did not injure the cucumber plants, while nearly all of the Thripstuluci were killed ($+\pi 1$).
cultural methouls. - These are undoubtedly too important to he neglected, even if insecticides be used, and in some cases they may prove eren more efticient than the latter. For the Onion Thrips, Wehster says: "All culls, tops, and other refuse of onion fields should be burned in the fall." He also recommends the burning of the grass along ditches and around the margins of the fields in winter or early spring to destroy the hibernating insects (476).

For the (ames Thrip) it seems that cultural methods are the only ones that cam be of any considerable help. A thorough burning of the old grats in early spring before growth begins destroys large mumbers of hibernating insects-Thrips amd many others. The attacks of the (inats Thrips are worst upon old, worn-out meadows. fields, and lawns, largely because Pout prutensis (June grass) is most common in such places. Infented grasis should be cut as carly as possible or fed green. So far as I can learn, the seed of June grase is sold only in lawn mixtures and is not used for field seeding, thongh it comes in maturally as the other stonter-growing species which are usually sown rum ont. The appearance of a large amount of "Silver Top" is there-
fore a sign that the field is becoming exhansted. Such fields should be plowed, and it is advisable to plant yith some cultivated crop for at least one season before re-seeding.

CHARACTERG OF THYSANOPTERA.
Small insects: length ranging from one-fiftieth to one-third of :m inch. Wings usually present; four in number. long, narrow, membranous. never folded. with at mont two longitudinal veins and few or no cross reins; hind margin always, front margin usually. fringed with long, slender hairs much exceeding in length the hreadth of the membranous part of the wing; wings laid horizontally along the ablomen when at rest; wings sometimes reduced to short pads not reaching beyond the hind edge of the thorax and entirely absent in a few species.

Mouth parts intermediate in form hetween those of sucking and chewing insects. but probably used almost entirely for sucking: arranged in the form of a cone situated on under side of head and placed so far back that it lies almost entirely under the prothorax (see Plate X, fig. 111), and is more or less roncealed from the side be the fore coxie and femora. Month cone formed by the labrum, the broad. flat, triangular, external portion of the maxilla bearing each a two or three segmented palpus, and the lathim bearing two or four segmented palpi; these extermal parts grown together and not freely morable. Mouth always asymmetrical, only the left mandible being developed. Mandible and lobes of the maxillie modified as internal, protrusile, bristle-like piercing organs.

Antenme quite slender, six to nive segmented, situated closely together upon vertex of head. Ocelli always present when long wings are present, always absent in entirely wingless forms: usually present, sometimes absent, when wings are reduced to pads. Prothorax distinctly separated from mesothorax and freely morable. Meso and metathorax firmly and closely united: metanotum longer than mesonotum. Tarsi usually two but sometimes one segmented; the terminal segment fitted at the tip with a protrusile, bladder-like organ which can be withdrawn entirely within the segment so as to be invisible. Alrdomen ten segmented. Terminal segment either conieal or tubular. Three pairs of stigmata are always present and an fouth pair is found in all Tubulifera and many Terebrantia. In the adult these are situated one pair each upon mesothorax and first and eighth abdominal segments. The metathoracic pair in Terebrantia is small, invisible except in carefully prepared specimens, and in some cases. I have been unable to find any trace of it. In the larra the stigmata are distributed in the same way except that they are present on the serond abdominal segment and not on the first.

Young resemble adults in general form, structure of mouth parts. and in food habits. There is, however, a distinct pupal stage during
which the inseret moves very little or mot at all, and takes no food. The wings developentirely during this stage and are outside the body skin. The metamorphosis apperaches closely to a complete one, but on awome of the similarity of larval and adult forms and mouth parts if must still be considered as incomplete. Reproduction is oriparous and frequently parthemogenetie.

M以TH(O) ()E MEASUREMENTS.

A fow of the dexeriptions of Thysanoptera previonsly published haw been found to be too brief and general for the recognition of the species. Another difliculty which has been noted in some descriptions is the giving of eompative dimensions relative to other epedies. This may be useful to the collector if he happens to have or kowe all the peecies referred to: otherwise he is at :m ntter loss to know what is meant. Havingexperienced these difficulties at rarious times, the writer came to the conclusion that each deseription should be absolntely complete in itself and independent of all otheres, and that therefore a sotem of measurements hased entirely upon the species under consideration would freeruently prove of serviee in the determination and separation of these inseets. The ero can mot be relied upon for exactness in this matter, as has leen frequently found in the conrse of this worls, and therefore all measurements given in the following deseriptions have been made in the same way, he means of an erepiece micrometer ats follows: A stage mierometer of reliable make Wals first proven to be accurate by comparison with a steel millimeter scale, then with each rombination of lenses used the number of spaces on the image of the stage micrometer corered by the scale of the eyepiece micrometer were determined, two points being selected where the divisions coincided. Then the number of spares covered on the stage micrometer was divided by the number of spaces of the eyepiece micrometer covering them, and the quotient was, ovidently, the fraction of a micromillimeter upon the stage shown by one division of the eyepiece micrometer. This quotient may be called the factor of the eyepiece micrometer for that combination of lenses and will hold unclanged for any object measured with that magnification, hut will of course vary for every other magnification. Illustration: Using a 1-ineh objertive and a 1 -inch eyepicee (Bausch and Lomb) with the tube closed. I find that the fifty divisions of the eyepiece micrometer corer, saty. exactly 1 millimeter of the stage micrometer. Dividing then 1 millimeter by on, I have two one-hundredths millimeter, which is the factor for that combination of lenses. Now, placing the object to be measured upon the stage, we find, e. g., that forty-five spaces of our eyepice micrometer just cover the object to be measured. Multiplying by the determined factor, we have two one-hundredths millimeter times forty-five, which equals ninety one-hundredths millimeter as the length of the object meatimed. This method has been used in
the determination of length and breadth of the species herein described.

When comparative length only are desired, ase e.g. in the comparative length of segments of antenna, relative length and breadth of the head, ete., there is no need to determine the artual measurement. It is sufficient to compare directly the mumber of spaces read upon the eyepiece micrometer, and this is the method nsed in such cases. In the case of the comparative lengths of segments of the antemme, all measurements have been made with a $\frac{1}{\frac{1}{-}}$-inch ohjective and a 1 -inch eyepiece. The measurements given show, therefore, not only a comparison between the segments of one antema, hut also between the segments of all antenne so measured. The number of the segment has been given above the line. and directly below it the mumber of spaces of the eyepiece micrometer covering that segment. Illustration:

$$
\begin{array}{lcccccl}
\text { Number of segment, } & \frac{1}{5} & 2 & 3 & 4 & \frac{1}{3} & \text { etc. } \\
\text { Spaces of micrometer, } & \frac{10}{5} & 1+ & 12 & \vdots 1 & \text { ete. }
\end{array}
$$

It has been found that there are slight individual rariations in the lengths of corresponding segments in different specimens of the sume species, and even in the two antenne of the same specimen, still there is in general a quite close agreement in this respect and the proportions hold very well. The antemme were selected for such aritical study, because there in an erident variation in the proportional lengths of segments in each specios, and becalse the antenmare the most surely a a ailable for a careful, accurate study of amy organs of the insect. Then, again, proportional measurements do not vary nearly as much as do the absolute measurements of different sized individuals.

All statements made as to lengths, both actual and comparative, in the deseriptions herein given are based upon actual measurements made in one or the other of these ways, an arerage being taken of the total number of specimens used in the description.

In deseribing color's it has been my intention to follow a few definite rules, which are given herewith: First, to name colors in plain, wellknown terms when possible; second, when the color being described appears to result from a mixture, in effual proportions, of two more elementary colors, they have heen given together in the same form and comected by a hyphen (gray-brown): third. when a predominant ground color is modified by more or less mixture with another color, the name of the ground color has been given last with the modifying color preceding it (grayish brown). Depth of coloring is indicated by such words as light, dark, ete.

individual variations.

Individual variation must ahways be considered in specific determinations and due allowance made therefor. The most common rariation will naturally be found in the line of color. It is prohable that to a slight extent the age of the individual may influence the depth of the
colering. becanse a short time is required, in several pecies which have been ohserved at least, after the emergence of the adult from the pupal stage before the full depth of coloring is acquired. There is, however, a conumon variation in color', apparently not due to difference in age, producing in some of the most variable species color varieties. These maty low either lighter or darker than the color of the typical form, hut, so far atour observations have gone, complete intergrades are to be found.

A raniation from the usual number of segments in the antema is quite frequently met with, hut this is always in the line of a reduction in mumber dhe nimally to a fusion of the last two or more segments.

The lengtla and breadth of the abdomen is, perhaps, the most variable charactere ats in most species the segments are slighty telescoped maturally: and being comected with each other by a flexible membrane are (alpable of great distension. This may be caused maturally by the simultameons development of a number of eggs in the ovaries of a female. When specimens are mounted in balsam, glyeerin, or any such medium for study, there is danger of compressing the hody of the insect if care be not taken to have present plenty of the mounting medium. and the usital result of this compression is the distension of the abdomen.

Measurements of a series of specimens show that a variation, often amounting to one-sixth, sometimes as-high as one-fouth, frequently occurs between the extremes in the size of individuals in the same species.

SYNOPSIS (OF SUBORDERS AND FAMILIES.

> Female with a saw-like ovipositor. Terminal segment of ahdomen of female conical; that of males rarely like females, hut usually bluntly rounded. Fore wings with at least one longitudinal vein reaching from base to tip of wing.

> Terebrantha (p.124). 2
> Female without an oripositor. Terminal segment tubular in both sexes. Both pairs of wings similar in structure with only one median longitudinal rein, and this only partially developed, never reaching to tip of wing. .Tubulifera (p. 187). Inclurles single family Phleothripide.
> $2\left\{\begin{array}{c}\text { Antenne with nine segments. Wings broal and rounded at the tips; fore wings } \\ \text { with cross veins. (Ovipositor of female up-curved Eolothripine (p. 126). } \\ \text { Antenne with six to eight segments. Wings usually narrow and pointel at tips, } \\ \text { withont cross veins. Ovipositor of femaledown-curved. Thmule. (p. 132). }\end{array}\right.$

CHARACTERS OF TEREBRANTIA.

Antemat have from six to nine segments, the terminal segments being usually much smalter than the preceding. Ocelli absent in the entirely wingless forms (Aptimothrips mufus) as in all wingless Thysamoptera, and sometimes in the wingless males of species in which the females are winged, they are present in all long winged forms. Maxillary palpi usually three, sometimes two segmented, and labial palpi usually two, sometimes four segmented.

Prothorax rarely longer than broad, but usually tramserse, frequently twice as wide as long, ordinarily rectangular in general outline and seareely wider at the hind edge than at the fore edge, except in the genus Chirothrips, in which it is strongly broadened behind, where it is about twice as wide as at front edge. The fore wings are broader, stronger. and much more specialized than the hind wings. shaded darker, if shaded at all. As a rule they have more veins, there being usually two, sometimes apparently only one, fully dereloped longitudinal veins hesides frequently a strongly developed rein following the border of the wing and known as the ring vein; cross reins are present insome cases. The reins are usually set with more or less numerous and conspieuous spines which vary in size, the smallest being minute and indistinct, the largest extremely stout and conspicuous. exceeding in length the breadth of the membrane of the wing. The membrane itself is thickly set with mumerous microscopic spines. A fringe is always present upon the hind margin, consisting on the hind wing of one, on the fore wing of two rows of long manally wayr hairs. On the fore wing these rows appear to be placed at different angles to the edge, so that instead of the hairs being parallel when the wing is in action, they cross each other at a slight angle, thereby forming a meshwork which most add materially to the strength and resistant power of the wing. Spines such as are found on the other reins are wanting upon the hind margin. The fringe upon the front is always shorter than that upon the hind edge and is composed of a single row of stouter. more bristle-like hairs. The development of the fore fringe appears to be in inverse proportion to that of the spines borme upon the costal edge, and when these last are very stout the fringe is vestigial, though sometimes both fringe and spines are wanting on the costa. In many eases the shading of the fore wings takes the form of dark cross hands alternating with light or almost white bands or areas. The hind wings are more slender and more delicate than the fore wings and have but one median longitudinal vein, usually fully developed, and no ring or cross reins. The median rein is without spines such as are borne upon the reins of the fore wing. The hind fringe is single instead of double and the fore edge always bears a more or less well-dereloped fringe. Shading of the hind wings is very slight and a distinct banding of them is not known. When at rest the wings are laid straight baek upon the abdomen, the fore wing of each side completely covering the hind wing and each pair lying parallel to but not upon the other. The hind fringes are very flexible or jointed at their attachment to the wings and when at rest point backward between them. The wings are very frequently redueed to small, rounded or oral pads which are usually invisible even when present. Rarely they are entirely alsent, but when this is the case the structure of the thoran indicates the fact. The fore legs are often more thickened
than the others-in the genus (himothoigs they are extremely thickenod. The hind legs are wisully longest and sometimes exeeed the abdomen in lengeth.

The abdomen is constricted somewhat at its junction with the thorax and is always ten segmented. The terminal segments are nsually shaped differently in the two sexes; in the females the last three segments form a cone the apex of which is quite pointed, and rarely the last segmont is rather tubular instead of conical. The abdomen of the malo is usually more slender and lighter than that of the female, and as a rule its end is mach more blunt, though occasionally shaped much like that of the otheresex. The ninth segment is comparatively large and contains the genital apparatus, and frequently the tenth segment is also much retracted within it. In the females the sexual openimg is between the eighth and ninth abdominal segments, but in the males it is between the ninth and tenth.

The femalo has a four-valyed. saw-like oripositor fitted to the underside of the eighth and ninth segments and reaching to about the tip of the abdomen, sometimes a little beyond. When at rest this apparatus lies partially conceated in a sheath on the underside of the last three segments; when in action it can be let down so as to work at abost any angle less than on degrees. The copulatory apparatus of the male is almost or entirely withdrawn into the body. but it is freely protrusile.

The males are often (puicker motioned and more active than the females. Nost of the members of this suborder move rapidly, though some are quite sluggish; they run rapidly and take flight readily. Some species. provided with well-developed wings. seem loath to use them. and many possess a considerable porrer of leaping.

Family EOLOTHRIPIDE.

Thn antemme are nine segmented. Ocelli are present in both sexes. The maxillary palpi are three segmented, and the labial palpi two or four segmented. The wings are large, broat, and romded at the outer ends. In addition to a heary ring vein, each fore wing hatw two longitudinal vains extending from its hase to tip, where they unite with the ring rein on each side of the tip, while the hind wings have only a restige of a median longitudinal rein. Four or five cross veins are present in cach fore wing. The fore wings are without a fringe upon the front mofe. though some more or less stont hairs are there present in some species. Both sexes hear a peculiar hook-like appendage on the undereide of the second segment of each fore tarsus. (See Plate I, fig. 9.) 'The oripositor of the female is bent upward so that its convex side is ventral. The males have the first abdominal segment much longer than the second. The members of this family run rapidly, having very long legs, but they do not appear to have the power of spraging.

The genns - Eoluthrijs is the only one of the three genera of this fanily found in the United states.

Genus ÆOLOTHRIPS Haliday.
Head about as broad tas long. Ocelli present in both sexes. Antennax nine segmented, the last three or four segments being very much shorter than the preceding and closely joined together: third segment much longer than any other. Maxillary palpi three segmented, geniculate. Prothorax about as long or a little longer than the head, without large bristles. Legs rery long and slender; fore femora somewhat thickened in both sexes: hind femora broadened; fore tibie unarmed; second fore tarsal segment, in both sexes, with hook-like appendage. Wings nstally present in hoth sexes: fore wing somewhat narrowed before the middle: fore part of the ring rein furnished with very short hairs, which hardly overreach the edge of the wing. Fore wings white, with two broad, dark cross lands. First abdominal segment in the males much longer than the second, and the ninth segment is drawn out at the hind angles into short clasping organs or hooks.

The two species which I place hre can be distinguished by the presence of a white hand around abdominal segments two and three in the female of A. bicolor, which band is wanting in the female of A. fusciutus. The last four segments of the antemat taken together are much longer in A. bicolor than the fifth, while in I. fiescintus the last four segments together are approximately as long as is the fifth alone.

ÆOLOTHRIPS FASCIATUS (Linnæus).

> Plate 1, figs. 1-3.

Theijs fusciata Linnaeus, S's.st. Naturar, 10th ed., 1758, 1. 457.
Theins fuscialle Linneus, Fanna sireciea, 1761, P. 266.-(ienffros, Histoire alrrégée des lnsectes, 1764 , 1. 385.
Thrigs fascialu Linnmen, syst. Nature, 12th ed., IIolmiae, and 13th ed., Vimotobonse, I, P't. 2, 1767, 1. it's.
Thrips fusciata Fabricut's, Systema Entomologia, 1775, 1. 745.
Thrijs fusciáu SCImRank, Enumeratio Insectormm Austrie indig., 1781, p. 297.
Thrips: fasciata Fabsucios, suecies Insectorum, II, 1781, 1. 397.
Thrips fusciulu Finmocuts, Mantissa Inseetorum, II, 1781, 1. 320.
Thrijs fusciulu Gmelin, Limm. Syst. Nat., 13th ed., I't. 4, 1788, 1. 222:3.
Thuips fusciutu Berkenirout, Synopl. Nat. IIist. (tt. Br. ant Ire., 1789, 1. 123.
Thrifs fusciutu FAbricues, Fintom. Systematica, IV, 1794, p. 229.
Thrits fresciatu STEW, Elem. of Nat. Hist., 11, 1802, p. 114.
Thrijs fusciatu Fabmaus, Systema Rhynurotormm, 180:3, p. 314.
Theips fusciuta Tunton, A General syst. of Nat. (Transl. from (imelin's Syst. Nat., 13 th ed.), II, 1806, P. 717.
Eoluthrips (Coleothrips) fusciatu MALID.15, Ent. Mag., III, 1836, 1. 451.
Eololhrigs fuscialu Burnester, I:mdlumh d. Entom., II, 1838, 1. 417.
Eolothrips fusciuta An\%ot and Semille, Hist. nat. 1. Ins. Hemipt., 1843, p. 646.

Fotothrips (Coleothrips) fasciatu ITabdar, Walker, 1lomopt. Ins of Brit. Mus., 1’t. 4, 185ั2, 1. 1117 , pl. Vii, fige. 31-42.
Aolnthrips fuscütu Heeger, Sitzungsb. (1. Acarl. I. Wiss. Wien, VIII, 1852, 1!. 185-136, 1)]. גxI.
conteothriss trifusciuta Fisch, Count. Gent., V'T, Dere. 1855, p. 385.
(otmothrips tritusciatu Fiten, Second Rept. Nox. Ins. N. Y. 1857, p. 308 (or 540).
Thripse fusciutu ne MI.N, Tijalschr. v. Entomol., 1871, P. 147.
Tolohthifs: ((otcothrips) fasciatu, Reuter, Diagnoser öfer nya Thysanop, från Finl., 1579, 1. 7, or Öfv. Fin. Soc., Xさ1, 1879, p. 214.
(ukothri)s fusciute P'ergande, Entomologist, April, 1882, 1. 95.
(intenthrip)s trifusciatu. Webster, Rept. Dept. Agr., 1856, p. 577.
('olenthrips trifusciuta Thaxter, Rept. Comn. Agr. Exp. Sta. for 1889, (1889), 1\% 180. Cohtethrips S-fusciutu Riley-Howard, Ins. Life, III, 1891, p. 301.
('olcothrijs trifusciutu Townens), Canarl. Ent., NXIV', 1892, 1. 197.
('ulpothrijs trifusciutu Gillette, Bull. 24, Col. Agr. Exp. Sta., 1893, 1. 15.
Coleothrips trifascutu D.sis, Bull. 102, Mich. Lgr. Exp. Sta., 1893, p. 39, fig. 10.
(cuotlrips trifusciutu Cockerell, Bull. 15, N. Mex. Agr. Exp. Sita., 1895, 1. 71.
Evhuthrip)s fusciatu L'zel, Nonographie d. Ord. Thysanopr., 1895, 1. 72, pl. i, fig. 4 ; pl. v, figs. 46-48.
Coleolltrips träfusciuta I)avis, Spesial Bull. No. 2, Mich. Agr. Exp. Sta., 1896, 1. 1\%, fig. 4.

Lioluthrips fusciutu Tïnpel, Die Geradfügler Mitteleuropas, 1901, p. 286, pl. NXIII.

Fromelc. -Length. 1.63 mm . (1.36 to 1.26 mm .) ; width of mesotho1: 1 . U. 301 mm . (1.27 to 0.8 ± 1111.) Gencral collor yellowish brown to dark brown: Head slightly wider than long, rectangular in outline, retracted slightly within prothorax; cheeks arched but slightly hehind eres; front mearly straight; surface of head but faintly striated and bearing numerous minute spines. Eyes large, black, elongated downward: horders of eyes light; ocelli suall. well separated, orangeyellow with maroon crescents. Mouth cone sharply pointed: maxallary palpi geniculate, three segmented; labial palpi four segmented; chitinous thickening extending from left eye connected with that at juncture of mouth cone with frons; just a trace of such thickening extends down from right eye; the two spines standing at base of frons close to transierse thickening are less than twice as long as subantennal pair of spines. Antenna nine segmented, nearly three times as long as head and very slender, approximate at base; relative lengthe of segment:

$$
\frac{1}{5.5} \quad \frac{2}{15} \quad \frac{3}{31} \quad \frac{4}{26} \quad \frac{5}{17} \frac{6789}{17}
$$

Segment one thickest, cylindrical; two is a little thicker than three; last fire regments are closely joined and from base of six they taper gradually to the tip. Anteme brown except tip of two and all but extreme tip of three nearly white; all segments quite thickly and miformly rlothed with short spines; those around tip of two being much the stontest; no sense cones present, but both three, and four
have an elongated, narrow, membanous sense area on under side of outer half; five bear's a small, rounded spot of similar texture near tip below.

Prothorax somewhat wider than long, and a little wider than head, nearly rectangular in shape; sides but slightly arehed, without conspicuons spines but with numerons minute ones. Mesothorax smoothly rounded at front angles. Metathorax slightly narrower at front end than mesothorax and tapering somewhat posteriorly. Wings always present, about one-serenth as broad as long, romded at tips; fore wing heavily reined haring a ring rein and two longitudinal reins which extend from the base and join the ring vein just before the tip of the wing; fore rein united to costa hy two cross reins at one-third and two-third its length; longitudinal veins united by one cross vein just before the middle and the hind rein is joined to the hind ring vein opposite the onter front cross vein; hind wing veinless. No fringe upon costa of either wing, hut costa and longitudinal reins set with a number of short, dark spines; hind fringe hairs short and straight, double row on fore wing. Fore wings with three white bands (at base, middle, and tip) and wider dark brown cross bands between these; hind wings with similar areas. but the two darker hands are so pale gray that they are hardly noticable. Legs gray-brown, dark brown in dark specimens, rery long and slender; fore femora slightly thickened and tarsi armed with a peculiar, hook-like structure opposed to a stout tooth something like a forefinger and thumb (Plate I, fig. 9); first segment of all tarsi very short; all legs thickly set with short spines; all tibia armed with rery stont spines at tips.

Abdomen about two-thirds the length of the whole body, small at base, enlarging to the middle: segments frequently overlapping considerably in the last half; last three segments long and tapering to tip; ovipositor very long and up-curved; spines upon last two segments long, dark, and conspicnous. Entire body yellowish brown to dark brown; connective tissue red.

Redescribed from seven specimens. No males found.
Foorl plients. - Alfalfa, buckwheat, celery, clover, Composite, oats, onion, tansy, wheat, various grasses and weeds.

Itchitut.-England (Haliday). Vienna (Heeger), Finland (Renter), Germany (Jordan, Bohls, near Berlin, Uzel), United States: Connecticut, Indiana, Iowa, Massachusetts, Michigam, New Mexico, New York, Ohio.

Larcu--"Larva yellow, the abdomen behind deeper orange, a whorl of hairs on each segment, more conspicuons on the last two; prothorax elongate; antemne shorter than in the perfect insect. the number of joints similar; mouth nearly perpendicular, not inflected under the breast; joints of maxillary palpi not very unequal."-Haliday.

Life history manown. Fitch observed that it was abundant on
Proc. N. M. vol. xxvi-02- 9
wheat early in the season and afterward passed to later-flowering plants, anch as tansy (Tinuectum verlyure). Webster found it common in all stages on buckwheat in Ohio.
Thaxter believed that this species camsed the rust of oats in Connecticut. Davis has reported it as the most common species on the heads of clover in Michigan, and fomed it both in and out doors on many plants.

至OLOTHRIPS BICOLOR, new species.

Plate I, figs $4-9$.

Femell. -Length, 1.9 mm .; width of mesothorax, 0.29 mm .; width of atdomen, 11.38 mm . General color light yellowish brown to dark brown.

Head as widu as long, also as long and as wide as prothorax; cheeks slightly arched behind eyes; anterior margin slightly arcuate; occiput tramsersely striated, quite thickly clothed with minnte spines. Eyes large, back, clongated downward, coansely gramulated, each facet distinct. slightly pilose: ocelli separated. bright reddish yellow, margined invardly with maroon crescents. Mouth cone sharp; maxillary palpi three segmented, geniculate, third segment very small; labial palpi four segmented, first segment very short. Chitinous thickening around left eye comected with that uniting mouth cone to frons; only a short restige of such thickening below right eye; two long, slender spines are bome upon frons in front of the middle of the transverse thickening and one cupually long spine upon middle of labrum; these spines are many times as long as any others upon the head. Antenne as long the heal, pro and mesotherax together, slender, filamentous, approximate at hase; relative lengthis of segments as follows:

$$
\begin{array}{ccccccccc}
1 & 2 & 3 & \frac{1}{2} & 5 & 6 & 7 & 8 & 9 \\
\hline 8.1 & 13.2 & 37.1 & 2.9 & 19.6 & 12.6 & 7.3 & \overline{3} .8 & 2.9
\end{array}
$$

Segment one thickest, as long as wide; three to six slightly narrower than two; seren to nine tapering; the last very minute and conical. All segments, except threc, of miform brown color; three is very pale yellowish white, except brown band around apex; two is brown at base fading to light yellowish at apex. Segments three to nine quite evenly clothed with fine hairs of uniform size; three and four bear cach a narrow. light-colored, membranous strip on outer part of underside, indistinet upon three on account of its light color: a small elliptical pot of similar structure near tip of five beneath.

Prothorax uearly square, slightly constricted in middle, with numcrous minute spines, but none conspichous. Mesonotum transersely striated; fore amgles of mesothorax broadly rounded. Metanotum reticulate; metathorax tapering posteriorly. Wings hroad, rounded at tips; fore wing with two longitudinal veins which bend outward
just before the tip and unite with the ring vein; fore longitudinal vein united to front part of ring vein be two cross reins at about the first and second thirds of its length and to the hind vein by one cross vein just before the middle of the wing; hind vein mited to hind part of ring vein by one cross vein at about three-fifths the length of the wing. Fore part of ring rein and both longitadinal reins set with numerous short, dark spines; hoth pairs of wings thickly covered with microscopic spines; no fringe upon front edge of fore wings, but a very light one upon hind wings; posterior fringe on fore wings double, on hind wings single; hind wings veinless. Wings clan white: fore pair conspicuously marked with two broad, hrown bands so that there are narrow white bands across the base, middle, and tip of the wing; hind wings almost clear white. Leg.s concolorons with hody, very long and slender; fore femora slightly thickened, but less than half as wide as long; second segment of fore tarsus fitted with a peculiar hook-like structure recured toward base of segment and at tip opposed to a stont tooth. All legs quite thickly set with small spines; hind legs much the longest, nearly as long as wings; each tibia armed at apex with two or more stout spines.

Abdomen small at base, enlarging gradually to its sixth segment, where it is about one-fifth as wide as the body is long; eight, nine, and ten tapering umiformly and quite abruptly; no marked difference in length of segments. Posterior part of segment one and segments two and three white or yellowish in color'; remainder of abdomen yellowish brown to dark brown. No spines apparent upon the abdomen, except on last three segment; nine bears a circlet of cight long slender bristles near its posterior edge; ten bears six similar bristles. Ovipoitor very powerful, up-curved, and extending a little beyond the tip of ahdomen.

Deseribed from nine females.
Cotype.-Cat. No. 4323. U.S.N.M.
Male.-Length but little more than 1 mm .; width of mesothorax slightly less than one-fourth body length. General color tawny yellowish with brow: extremities to appendages, not nearly as dark as female.

Head subequal in length and breadth and shghtly smaller than prothorax; spines in front of thansverse thickening at base of month cone not conspicnonsly long. Antenme three and one-half times as long as head, ahmost equal to length of abdomen; relative lengths of segments as follows:

Onter two-thirds of antemma dark brown; first three segments light gray-brown, two and basal half of three being lightest; antenne very
hairy. Hind legs very slender, longer than abdomen; all femora and fore tibise hromish yellow shaded darkest above; middle and hind tibia and tarsi gray-hrown to dark brown.

Abdomen very smath, but slightly longer than antenne and not as broulds mesothorax, narrowed somewhat at attachment to thorax, incremsing gradually in hreadth up to ninth segment; tenth segment veryabruptly maller and conical. Segment one very long and marked by two brown, longitudinal carine dividing it into thirds dorsally. Ninth segment also peculiar, being very long and as broad as any in the abdomen; hind angles produced into a pair of claspers, also bearing a pair of stout spine; tenth segment small and set with quite long, stont spines. Second, thirch, and fourth segments nearly white, sometimes irregularly suffused with yellow; rest of abdomen tawny yellow.

Described from three males.
(otype. Cat. No. 6323, L.S.N.M.
These males differ much more than is usmal fiom the description of the female but it seems that they are more closely allied structurally to A. bicolur than to A. fusciutus. and so I place them with the former species.

Froerd plants.- Branella rulyaris, Panicum sunguimale, bindweed, and various grasses in mowings.

Inいてitut.-Amherst, Massachusetts.

Family THRIPIDA.

The members of this family have from six to eight segmented antenme (apparently nine segmented in Amophothrips striatus and Psembothrijs inequalis); the segments beyond the sixth are usually short and form what is called the style. Maxillary palpi are usually three. sometimes two segmented; lahial palpi never composed of more than two segments. The wing's of Thripidæ are usnally slender, gradually tapering more or less and pointed at the tips. The fore wings, ass a rule, present two parallel longitudinal reins, the front one running from the base to near the tip of the wing; the hind rein appears minally as a hranch from the fore vein at about one-third the length of the wing. Sometimes, however, all connection between these rems is wanting. Cross reins are rarely visible, thongh traces of them can sometimes be seen. The ring rein is not nsually rery heary or prominent. A fringe is gencally present upon the front margin of the fore wing, but may be restigial. Nore or less stout spines are found along the reins and costa of the fore wing. The hind wing has one median, longitudinal ven without spines and no cross or ring vems, but the costa bears a fringe. The oripositor of the female is bent downward, i. e., concave side ventral.

SYNOPSIG OF THRIPIDE.

A Antemne with eight segments 2
\{ntemme with seven segment. 11
2 fBody with markedly reticulated surface Ifeliothrips (p. 16s)ZBody withont reticulate surface3
3 \{ 41)$\left\{\begin{array}{l}\text { Abdomen clothed with fine hairs and having a silky hister. Siricolluri) (p } \\ \text { Body without clothing of fine hairs. . .-....................................... }\end{array}\right.$
\{Last two segments of the antema longer than the sixth Raphidothrips (1. 158)
Last two segmente shorter than sixth 5
Terminal segment of abxomen with a pair of extremely stont, short spines near the tip above Limollrips (1. 138)
Terminal segment without musually stont spines 6
6
Antenne with second segment drawn out into an acute process on outer angle Chirothrigs (1. 13i) Second segment of antemar normally symmetrical 7
7 \{Ocelli and wings wanting 1ptinothrips (1. 166)
locelli and wings present 8
8 \{ With spines at hind angles of prothorax 9
lWithont spines at hind angles of prothorax 1mсяhothrips (1. 160)
9 fith two long spines at each hind angle of prothorax 10
With one long spine at each hind angle of prothorax Psemlothrip.s (p. 146)
10 Without a long spine at middle of each side of prothorax Euthrips (1, 147)
LWith a long spine at middle of each side of prothorax Scolothrips (1. 157)
11 fFore wings broad and without front fringe I'erthenothrips (1. 175) Fore wings slender, spines on outer half fewer than on basal... Thips (1. 178)
Genus CHIROTHRIPS Haliday.

Body thickened. Head very small and infront of the eyes drawn out into a three-cornered process upon which the antemme are situated. Ocelli present in the females and located very far back; wanting in the males. Antenne eight segmented, the second segment ending in a blunt prominence at the outer angle. Maxillary palpi three segmented. Prothorax nearly twice as long as the head, and trapezoidal in form, being abont twice as broad at the hind edge as at the fore edge. Two prominent spines present at the hind angles or wanting in some species. Legs short: the fore pair extremely thickened, so that the tibie are short and broad and the tarsi small. Wings long and very slender; fore wing with two veins upon which there stand a few small spines; front fringe well dereloped. Males wingless.

SYNOPSIS OF SPECIES.

1 \{ With two moderately long spines at each hind angle manicatus (p. 134)1 Without long spines at the hind angles2
${ }_{2}\{$ Ablomen light yellow viesus (p. 137)
$2\left\{\begin{array}{l}\text { Abdomen light brown }\end{array}\right.$ crassus (1. 136)

CHIROTHRIPS MANICATUS Haliday.

I'late II, figs. $14-16$.
Thrips ((\%hioulhips) municatu IIaladis, Entom. Nag., III, 1836, p. 44.
Thrijs memireth Botheister, Handl. d. Entomologie, II, 1838, 1. 413.
Thifis longipmmis Burablster, Ilamth. d. Entomologie, Il, 1838, p. 413.
(Wirothrips monionth Mayot and Serville, Ins. Hemipteres, 1843, 1, 642.
(hirothrips lomgipemis Awot aud Servilee, Ins. Hemipteres, 184:3, p. 642.
Thrips ('himolhipses) manicala Il.alidiy, Walker, Homopt. Ins. Brit. Nus., 1852, p. 1106, pl. vi, fig. 12.

Thrips: (fhirothrips) maniratu Revter, Diagn. ̈̈fs. nya Thysanopt. f. Finland, (1878-79), 11. 5, 6 .
(himohrips antenutus Osbors, Canal. Ent., NY, 1883, p. 154.
fhiruthrips entemutus Livnemax, Bull. 1. Soc. Imp. d. Nat. 1. Mosenw, LAII, 1886, No. 4, pp. 323-325, fig. 12.
(hirahrips maniculu Jablonowski, Termes. Fuzetek, NVII, 1894, p. 47.
(hirulluips manicrta Uzel, Mon. 1. Ord. Thysanoptera, 1895, p. 80, pl. ı, fig. 2; pl. ri, fig. 49.
('hirothrips maniente Tïnmbl, lie (remalfügler Mitteleuropas, 1901, p. 287.
Fomelt. - Lengeth 1 mm . (0. 8 St to 1.18 mm .); width of mesothorax (0.2 c mm . ($0.2 t$ to (1.2 .2 mm .). (icneral color quite uniform dark yellowish brown.

Head somewhat shorter than wide, almost conoid in shape, frequently hidden up to the eyes in the prothorax; cheeks only about one-third the length of the eye; head prolonged into a triangular process in front of the eyes; a row of four small spines across the head between the front edges of the eyes and one small spine on each side of the anterior ocellus. Eyes large, black, rather coarsely faceted; ocelli sulapmoximate, almost white or pale yellowish with heary maroon creserentic inner margins, placed in a low triangle far back between hind half of eyes. Mouth cone short, broad and blunt; maxillary palpi three segmented. Antenna less than twice the length of head; segments thick and more or less rounded; relative lengths of segments as follow:

$$
\begin{array}{cccccccc}
1 & 2 & 3 & \frac{4}{5} & \frac{5}{6} & \frac{7}{8} & 8 \\
5.5 & 5.9 & \frac{3}{6.4} & 7.5 & \frac{8}{6} & \frac{1}{2} .5 & 2.5
\end{array}
$$

13asil segments very broad and almost contiguons; two drawn out into at short, blunt angle on outer side: three and four bear each one rery stout, bunt sense cone on outer angle. All segments brown; tips of two and three frequently yellowish.

Prothorax large, trapezoidal, a little less than twice as long as head, ats wide as head in front and twice as wide behind; sides nearly straight; surface dotted with mumerous very small spines and marked with tramserse, atrehed wrinkles, giving it a scaly appearance; numerons small spines stand at hind edge, and two spines at each hind angle are much larger than the others. Mesothorax a little broader than
the prothorax, widest behind, sides curving forward; metathorax ahruptly somewhat marower, and its sides curve inward to base of abdomen. Wings nearly always fully developed in females, about four-fifths as long as hody and in middle ahont one-serenteenth as broad as long, sharply pointed at ends, heavily fringed on both edges. Hind longitudinal rein branches from the fore at about one-fouth the length of the wing; fore vein bears six or seven spines before the branching off of the hind rein; heyond this the fore rein bears usually two and the hind rein four spines: costa hears numerous short spines. Fore wings gray-hrown; hind wings gray. Legs short and powerful: fore femora extremely short, nearly as hroad at hase as long, wrinkled on surface and at tip ontside with chitin turned up into a sort of tooth; fore tibiec also extremely short and thick; eath tibia bearing a row of spines of gradually increasing length and stoutness on imner side toward tip; these are most strongly developed on hind legs. Legs dark brown except tarsi more or less gray or yellowish.

Abdomen hroader than mesothorax, hardly twice as long as broad (segments nisually overlapping considerably and giving a dark and light brown handed appearance): spines around last two segments moderately long and stout, dark brown and conspicuons: oripositor of grood length. Color of abdomen uniform dark brown; receptaculum seminis inconspicuous or invisible.

Redescribed from ten females.
Mrele.-Length 0.83 mm . (0.66 to 0.94 mm .) ; width of mesothorax 11.22 mm . (0.20 to 10.24 mm .).

Ocelli wanting: spines on hearl as in female. Relative lengths of antemal segments a follows:

$$
\frac{1}{5.2} \frac{2}{5.2} \quad \frac{3}{5.9} \quad \frac{4}{6.5} \quad \frac{5}{4.4} \frac{1}{5.6} \begin{gathered}
1.5 \\
1.8
\end{gathered}
$$

Segments two and three pale yellowish. Wings entirely wanting. Abdomen more narrow than in female and bluntly romed at the end. Ninth segment very large, conoid; tenth segment retracted therein; ninth with a short stout spine on each side of the hind edge above; genital apparatus protruding beyond the tip of tenth segment; a romded light depression in middle of ventral plates on segments three to six.

Described from five males.
Fored plants.-Flowers of various grasses and cereals, clover, wild carrot.

Mabitat.-England (Haliday), Germany (Burmeister, Jordan. Bohls), Finland (Reuter), Russia (Lindeman), Bohemia (C'zel), United States: Manchester, Iowa; Amherst, Massachusetts.

Life history manown exerent that they hibernate in dried Hower

I hate compared my specimens with those of Osborn's ('. antennutus and they aro identical.

CHIROTHRIPS CRASSUS, new species.
Plate 1I, figs. 17-20.
Frimetr. - Length 11. tis mm. width of mesothorax 0.26 mm . Genaral color of head and thorax hrown: abdomen gray-brown or yellowish hrown.

Head wory small, slightly wider than long, narrowed in front between the eyes and elongated anteriorily: distance between eyes equal to ono-half the width of head; froms between antenne bluntly acuminste. Eyes reddish orange by reflected light: ocelli placed in a low triangle far back between hind edge of eyes; each ocellus pate, margined inward! with a dark-red crescent. Mouth cone very short and broadly rounded; maxillary palpi short, three segmented. Antenna approximate at hase; relative lengths of segments as follows:

$$
\begin{array}{cccccccc}
-\frac{1}{4.5} & \frac{2}{6} & \frac{3}{7} & \frac{4}{6.5} & \frac{5}{6} & \frac{6}{8.3} & \frac{7}{2.8} & \frac{8}{3}
\end{array}
$$

Basal segments large, longitudinally compressed, nearly twice as wide as long: segment two drawn oat at outer angle into an acute process; three with slender peduncle, sulpyriform, bearing one prominent sense cone on outside, as does also four: four and five rounded; four nearly as thick as long; five somewhat narrower; six elongated; seren and cight moderately slender. One and two pale straw yellow; thre to six shading gradually to a medium brown: seven and eight ako medium brown.

Prothorax one and one-half times as long as head, one and threefourths times as wide as long, twice as wide at posterior edge as at anterior; sides nearly straight, indented abore fore coxte, with prominent spines at posterior angles. Mesothorax one and one-fourth times as wide as prothorax, quite a deep constriction between mesothorax and metathorax: pterothorax with more or less rusty tinge. Wings long, saber-formed, slightly overreaching the tip of the abdomen; fore wings shaded with gray, hind wings nearly clear. Fore longitudinal vein extonds through the wing; hind rein arises from fore vein at one-third its length; hoth reins disappear bofore reaching the tip of the wing. Fore ruin bear two spines on distal half; hind rein bears five spines. Legs short: fore pair strongly thickened; all femora grayish or yellowish brown: fore tibia and all tarsi pale yellowish; middle and hind tibia hrownish at hases and ahore, fading to pale gray or yellow beneath and at extremities.

Abdomen elongate-ovate in outline, hantly pointed at tip. one and four-fifthe times as long as hroad; spines upon last two segments short, weak, and inconspicuous; owipositor short and weak. Color rustygray brownish upon sides, aud pale rellowish upon last two segments.

Described from two females.
Cotype.-Cat. No. 632t, U.S.N.M.
Malt - -Length 0.66 mm . (0.58 to 0.78 mm .) ; width of mesothorax $0.2: 3 \mathrm{~mm}$. (11.1:9 to 0.25 mm .). (ieneral color of head and prothorax grayish or yellowish brown; pterothorax abruptly pale yellowish, shading through giay to chestnut brown upon last two abdominal segments.

Head as wide as long, without ocelli: relative lengths of antennal segments as follows:

$$
\begin{array}{cccccccc}
\frac{1}{4.4} & \frac{2}{5.9} & \frac{3}{5.9} & \frac{4}{5.9} & \frac{5}{5.2} & \frac{6}{7.9} & \frac{7}{2.2} & \frac{8}{2.6}
\end{array}
$$

Prothoras one and one-third times as long as head, and one and onehalf times as wide as long; mesothorax one and one-sixth times as wide as prothorax; wings wanting: terminal two segments conoid; spines thereupon slightly more prominent than in female.

Described from seren males.
Cutype. - Cat. No. 632t, U.S. N.M.
Foonl plant.- Panicum capilare.
Ilulitut.-Amherst, Massachmsetts.
Life history unknown.

CHIROTHRIPS OBESUS, new species.

Plate II, figs. 21, 22.
Female.-Length 0.78 mm.; width of mesothorax 0.29 mm . ; width of abdomen 0.275 mm . General color of head and thorax yellowish brown; abdomen pale yellow.

Head rery small, as wide as long. narrowed anteriorly, much elongated between the eyes, acmminate between basal segments of antenne. Eyes dark, relatively large, occupying sides of head from close to base of antemne almost to posterior edge of head: distance between eyes me-half the width of head; ocelli rather small and placed rery far hack between hind edge of eyes; anterior angle of triangle formed by ocelli is rery ohtuse: color pale rellow, margined inwardly, or entirely surrounded be red patches. Nouth cone very short and bhunt; maxillary palpi short, three segmented. Antenne one and three-fourths times as long as head, situated upon the elongated portion thereof; relative lengths of segments as follows:

$$
\begin{array}{cccccccc}
\frac{1}{2} & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 4.5 & 19 & 7 & 16.5 & \overline{6} & \frac{8}{2.3} & 2.5 & \frac{3}{3}
\end{array}
$$

First segment muth empressed longitudinally; tramserse diameter morre than twice it: longth; two very strongly drawn out externally into as stout, conical clongation; segments three, four, and tive rounded; three with a quite long peduncle; three and four each hear one stout, tramerent sense come upon outer angle. Color of one and two clear pate yollow: three to six becoming gradually more brownish; six to eight uniformly 'hestnut brown.

Prothorax one and one-third times as long as the head; anterior edge but slightly wider than hind edge of head; sides slightly concave, divergent so that width at posterior edge is more than twice that at anterior edge: himb angles acute, withont long spines: sides quite decply indented abore fore coxa. Sides of mesothomx romded, conrerging anteriorly: metathorax marrower than mesothorax, its sides also rounded hut converging posteriorly. Color of thorax light yellowish brown, sometimes splashed with red. Fore legs very short and extremely thickened; other legs short, but not thickened. Legs pale yellow, middle and hind tibise slightly hrownish on upper side, hasal part of fore femora shading to light brown. Wings long, sabreformed, orereaching tip of abdomen, shaded with gray. Two long reins, the hind one hamehing from the fore at about one-third the length of the wing: both reins disappear before reaching the apex. Each rein bears four to six spines; basal third of wings unfringed; fore fringe sparse. long and slender.

Abdomen oroid, acuminate at apex, broadly attached to metathorax, one and two-third, times as long as broad. Spines upon last two segmente very short and weak, and those upon rentral plates weak and inconspicuous. Ovipositor rery short and weak, apparently not functional; tenth segment split open ahove. Color of abxlomen miformly drar pale yellow, except apex brownish and posterior edges of segments fantly hrownish, receptaculum seminis over base of ovipositor bright reddish orange.

Deseribed from three specmens.
(otype- Cat. No. 6325, U.S.N.M.
Wale unknown.
Foorl plants.- Fistucel onima, I'oue pratemsis.
Ifeljitut. - Amherst, Massachusetts.
Genus Limothrips Haliday.
Body powerful. Head longer than wide, broadened behind, and in front of the eyes extending into a triangular projection upon which the antemme are borne. Ocelli present in females, but wanting in males. Antemme eight segmented: third segment drawn out into a blunt, Hrimgular process at outer angle. Maxillary palpi two segmented (L. cerentium three?). Prothorax somewhat shorter than the head, slightly broadened at hind edge; hind angles provided with
one long, stout spine. Legs rather short and thick. Wings quite long and of medimm hreadth; costa bearing a fringe; reins bearing a few short spines. Terminal segment of ablomen in female elongated somewhat and approaching a tubular form, split open above; each side bears a short, extremely stout spine and similar stout spines are horne upon the sides of the righth segment.

Male entirely wingless. End of ablomen bluntly romded: ninth segment bears a stout spine at middle of each side and a pair of similar spines stands closely together near the dorsal line above.

Species of this genus move slowly and have no power of leaping.
I found only the new species arema of the genus.

LIMOTHRIPS AVEN \notin, new species.

Plate I, figs. 10-12; Plate II, fig. 13.
Female.-Length 1.57 mm . (1.48 to 1.66 mm .) ; width of mesothorax 0.28 mm . (0.26 to 0.30 mm .). Form elongated, slender. (ieneral color dark yellowish brown.

Head a little longer than wide, tapering a little anteriorly: cheeks very slightly arched; surface of head not at all, or lont very faintly, cross striated and bearing a few scattered minute spines; front strongly arenate, produced considerably between hases of antenna; color of head dark brown. Eyes of moderate size, black with yellow margins, triangular above, protruding slightly; ocelli fairly well separated, anterior one smallest, pale yellow with very dark red crescents on inner margins. Mouth cone short and moderately thick; maxillary palpi short, only two segmented. Antenna rather short, about one and one-half times as long as the head, considerably separated at bases: relative length of segments as follows:

$$
\begin{array}{cccccccc}
\frac{1}{4.4} & \frac{2}{9.1} & 3 & 11.8 & \frac{4}{10.2} & \frac{5}{10.5} & 6 & 1+.4 \\
\frac{7}{3} & \frac{8}{3.8}
\end{array}
$$

Segment one much wider than long; two cup-shaped: three to five clarate; six fusiform; seren and eight slender, cylindrical; one and two dark brown; three to eight shading gradually from pale brownish gray to more or less dark brown; onterangles of three and four strongly developed (three especially so, though obtuse), and each bears one long pointed sense cone; siz also bears one long, slender sense cone on inner side at two-thirds its length.

Prothorax a little shorter than head and about one and one-third times as wide as long; sides diverging from head posteriorly; only one long stont spine at each posterior angle: other spines scattered and minute; transrerse margins nearly straight; sides slightly rounded; concolorons with head. Mesothorax about one and one-third times as wide as prothorax; metathorax abruptly narrower; sides nearly par-
allol: pterothoma more or less rusty hown in coler. Wrings perent, quito lomes and stonder. abont one-serenteenth as broad in middle as long. taperinge wradully from base to tip; two longitudinal veins in fore wing, the serond branching from the first at about one-fourth its length; hoth weins and costa hear a few short, rather stont, dark hrown spines: costa about twenty, fore vein about twelye, of which only two stand berond the middle of the wing; hind rein about nine spines; fore wings dark, smoky gray; hind wings very slightly gray; costal frimges long. Legs rather short, hot not thickened; femora and middle and hind tibia dark brown: all tarsi, fore tihie and extremities of middle and hind tibix yellow: fore tibie shaded with brown above; himd thia atone bearing stout spines.

Abdomen abont two-thirds the length of the body and only about onc-fourth as wide as long, almost cylindrical in form; segments not overlapping, width of segments increasing very gradually up to the sixth. then diminishing rapidly; last three segments conoid, prolonged at tip of tenth. Spines on sides of abdomen weak and inconspicuous before the serenth regment; cight bears three or forr short, very stout, slightly emryed. dark brown spines on each side: nine bears a circlet of long, slender spines: tenth segment split open above, sharply pointed at tip, and on each side above is a short, very stout, straight, dark brown spine reathing but slightly beyond the tip; color of abdomen gray-brown, shading to almost hack at tip; connective tissue pale yellow; surface of segments finely reticulated.

Described from eight long-winged females.
(intype.-Cat. No. 6326, U.S.N.M.
linke Length 1.05 mm . (1.02 to 1.0 s mm .) ; width of mesothorax 0.22 mm . (0.20 to 0.22 mm .).

Head as broad as long. Ocelli generally wanting, though sometimes restiges are present. Antenne only one and one-third times as long is the head; relative lengths of segments:

$$
\begin{array}{cccccccc}
1 & 6 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 8 & 9.7 & 7.7 & \frac{8}{7.3} & 11 & 2.3 & \frac{1}{3}
\end{array}
$$

Color paler than in female, with more of a yellowish tinge, becoming yellowish brown at tip. Pterothorax without traces of wing pads; the dorsal plates very hroad, being as wide as first abdominal segment. Head and thorax yollowish brown; legs yellow; femora and tibix considerahly shaded with hrownish.

Ahdomen but little more than twice as long as wide, though segments overlap (onsiderably, giving it a rellowish brown and darkbrown (ross-hathded appearance; hontly rounded at tip; segment nine rey large and blontly conoid; segment ten small, eylindrical, and plainly visible retracted within the ninth; copulatory apparatus projecting a litle from ten. (llose together in middle of nine abovestand two extremely short blunt spines berme mpon broader back, chitinous
projections, the imer edges of which are parallel and the black marking tapers to a point anteriorly; on cach side of these peraliar processes stands a long, slemder spine: at about the middle of each side of ninth segment is a very abrupt, angilar. chitimous projection shaded almost black, supporting on the inside of it an exceedingly short. stout, dark brown, hunt spine; other spines on this segment slender, but not very long. Segment ten is blunt at end and bears a row of short, small spines abore, close to hind edge: nine is cut out on upper side over ahout half of ten, which at tip does not quite reach to tip of nine or under side; abdomen yellow-brown.

Described from four specimens.
(istype. ('at. No. 6326, U.S.N.M.
Foerl plemts. - Oats. Frstruce prortomis.
IHobitut.-Pemnerlvania, Massachusett.
Life history unknown.
This species was very abundant upon and caused much damage to oats at State College, Pemnsylyania, during the summer of 1898.

Genus SERICOTHRIPS Haliday.

Body hroad and having a silky luster due to the presence of mumerous minute spines on the abdominal segments. Head fully one and one-half times as wide as long. Eyes large and protruding; ocelli present in hoth sexes. Antemne eight segmented. Maxillary palpi three segmented. Prothorax much longer than the head, without long spines at hind angles (one present in S. variulbilis). Legs, especially hind pair, quite slender. Wings either reduced or fully developed; when present. the fore wing is broad at basal fourth, the remainder being very narrow; only one longitudinal rein developed; fore fringe long; spines on veins numerous and moderately developed. Abdomen in some species strongly arched and its segments broad and short; tip of abdomen conical in both sexes. Abdomen of male much more slender throughout.

Species of this genus leap readily.
The characters of this genus are extended to include the following species:

SYNOPSI OF SPECTEN.

Body nearly black except segments four, five, and six of abdomen almost white; wings reduced cingulatus: (1. I 14)
Body yellow with brown or gray markings; wings prevent and with two prines on lavt fourth, where hind vein usually is ruriabilis (p. 143)

SERICOTHRIPS CINGULATUS, new species.

Plate III, figs. $27-29$.
Female.-Length 1 mm . (0.84 to 1.2 .5 mm .); width of mesothorax $0.25 \mathrm{~mm} .(0.22$ to 0.31 mm .) ; width of abdomen $0.3 i \mathrm{mmm}$. (0.31 to 1. 45 mm .). General color very dark brown; abdomen cross-lounded with white in the middle.

I (add narow an compared with following segments, one-half as long as wide, widnes thongh the eyes and constricted considerably behind them, nork-like and sunken slightly in the prothorax; front slightly depressed at the imsertion of the antemme. Eyes small, rounded, strongly protruding. occupying together only one-half the width of tho head. hatck, coarsely gramalated; margins light yellow; ocelli present. very small, well separated, not prominent: anterior one indistinct. Color of head hrown; surface bearing sattered small eurved spines. Month cone reaching to about the posterior edge of prosternmm: maxillary palpi three regmented. Antenne very neally as long as head and thorax together, slender, eight-segmented; relative lengths of segments:

$$
\begin{array}{ccccccc}
1 & \underset{2}{3} & \frac{3}{5 . S} & 9.9 & \frac{4}{16 . t} & \frac{5}{14.5} & \frac{6}{12.2} \\
14.3 & 3.2 & \frac{8}{4 .}
\end{array}
$$

Basal two segments thickest; spines slender and inconspicuons. semments one, two, and three light yellow; third shaded with hrown toward apex: remainder dark brown except four, which is yellowish at bise and style is somewhat lighter hown.

Prothorax nearly twice as long as head and one and one-half times as broad as long: widest in middle, tapering abruptly to the head and less abruptly to posterior angles: surface marked with deep, tramsverse, reticulating wrinkles appearing like strit in dorsal view; each anterior angle hears a pair of short, divergently curred spines; one short, anteriorly curved spine at each hind angle; color dark brown. Meso and metathorax fogether sarcely as long as prothorax, only slighty wider than pothorax; yellowish hrown, except notal plates dark hrown; sides of metathorax not converging posteriorly; metanotum much wider than long. Wings reduced, the pads reathing only to the first abdominal segment. Fore and middle legs of approximately same length; fore pair thicker; hind pair longest and quite slender; all femora shaded with brown in middle but lighter at extremities: tihia yellowish brown, more yellow at hasal attenuations, fore pair lightest; tarsi uniformly yellowish, slender, and tapering evenly from their lases to tips. Surface of all femora and tibiae thickly covered with transwerse ridges: spines upon hind tibia especially long and slender.

Uhdomen very large, acutely ovoid, about one-half as broad as long, uniformly thickly corered with minute spines which appear most clearly as a fine fringe at posterior edge of each segment; a transerse dorsal row of about twelse guite miformly long, brownish pines regularly spaced arros the middle of segments two to six, and six similar spines stand in as many small, dank depressions along the posterior edge of the stermal plates of these segments. First three abominal segments light brown; fonr, five, and six abruptly pale gray. or yellowish gray, tinged with hrown in middle of dorsum, most broadly on sixth segment; last four segments again abruptly dark brown. A narrow, dark-brown, transverse, chitinous thickening
(appearing as a stripe) extends across two-thirds of the width of the dorsal plates of segments two to seven near their anterior edges; spines upon terminal segments short and weak.

This species posisesses a well-dereloped power of lapping.
Described from twenty specimens.
Cotype.-Cat. No. 6327, U.S.N.M.
Mete.-Length 0.87 mm . (0.66 to 1 mm .) ; width of mesothorax 0.21 mm .; width of abdomen, 0.27 mm . (0.22 to 0.30 mm .).

Relative lengths of antemal segments:

$$
\begin{array}{cccccccc}
\frac{1}{5.8} & \frac{2}{9.3} & 3 & 15 & \frac{4}{12.8} & \frac{5}{10.3} & \frac{6}{12.8} & \frac{7}{2.8} \\
\hline 3.7
\end{array}
$$

End of abdomen shaped as in female; a transverse elliptical depression in the middle of ventral plates of segments five to seven. Segment nine long and tapering; tenth elongate and retracted within the ninth. Genital apparatus appears to be wholly protrusile. Testes large and brownish yellow in color.

Cotype.-Cat. No. 6327, U.S.N.M.
Food plants. - Various grasises.
Ifubitut.-Amherst, Massachusetts.
Life history unknown.

SERICOTHRIPS VARIABILIS (Beach).

Plate II, fig. 23; Plate III, figs. 24-26.
Thrips rariabilis Beacif, Proc. Iowa Acad. Sci., I895, ILI, 1896, 11. 220-203.
Fenule. Length 0.84 to 1.23 mm . ; width of mesothorax about onefourth the length of the body. General color yellow, with more or less striking brown or gray-brown markings.

Head about two-thirds as long as broad, broadest throngh eyes, retracted considerably into prothorax; cheeks moderately full, converging somewhat posteriorly; anterior margin nearly straight, but slightly elevated between bases of antenne. Spines upon head inconspicuons; but one moderately long spine on each side of fore ocellus, and one behind each hind ocellus; a row of four short, strongly curved spines across front near margin, and a few small spines upon cheeks; color of head pale yellow with dusky shadings. Eyes moderately large, protruding a little, nearly black, coarsely faceted, plainly pilose, ocenpying about three-fifths the width of the head; ocelli large, approximate, reddish orange, heavily margined in wardly with maroon, situated upon a slightly raised area between the eyes. Month cone tipped with black; maxillary palpi slender, three segmented. Antenure eight segmented, more than twice as long as head, bases separated by about two-thirds the width of a hasal segment; relative lengths of segments:

$$
\begin{array}{cccccccc}
1 & 2 & 3 & \frac{4}{5} & \frac{5}{10} & 6 & \frac{7}{11.7} & \frac{8}{2.7}
\end{array}
$$

Segment one nearly spherical and sightly narrower than two which is broadest: there and four fuwiform: five similarly formed to four at its lasec. hut quite broad at it- apex, and rather broadly joined to six which with st yle tapers grathatly to tip. Color: One white and nearly transbarent: two pate or hrownish yellow; three and four pate rellow; three light hrownish at tip and four in onter half; remainder of antenna light to dark heown, hase of five somewhat lighter.

Prothorax about three-fourthe as long as wide, a little longer and a little wider than the head; sides ahout parallel; angles rounded; transvelsely striated on iloreum; only one long, slonder spine at each hind angh: anterior third of pronotum concolorous with head, remainder marken with a saddlo-shatped patch of brown, the anterior edger of which is conceare and sharply defined: six on eight medimm-sized spines stand in this dark loorder, behind it there are six more or less wefldelined brown apots. Pterothorax large and apparently sommetrically formed on aceount of first segment of abdomen being closely joined to metathorax and closely approaching it in color: meso and metathorax equally wide and ahout one and one-half times as wide as the prothorax; metanotal plate light brown; rest of pterothorax hright or dusky yellow, except simall brown spotsat anterior edge of mesonotum and at anterior angles. Wings long, reaching to tip of abcomen; fore wings very slender beyond the basal fourth, hreadth at middle only about one twenty-sixth their length: only the fore longitudinal rein is fully developed, though restiges of the hind rein may be seen at the hase. Spines upon costa and fore reins dark hrown and conspicuons; twenty-two to thirty on costa; twenty to twenty-six on fore rein placed at regular intervals: two isolated spines stand upon the last fourth of the wing on the line where the hind rein might be expected: the scale bear's four spines along its inner edge and one discal near its hase. Fore wings uniformly dusky or marked with three white and two gray-hrown (ross bands alternating; scale also gray-brown; anterior fringe long and fine on outer two-thirds of costal. Legs, especially hind pair, quite long and slender; general color pale yellowith with hrown markings on fore femora above, both outer and inner sides of fore tibiae, around outer halves of middle and hind femora, around middle of these tibia, and bases of all bladders. Tarsi slender and tupering; hind tibiee withont stont spines within.

Abdomen crlindrical, tapering sharply from anterior edge of eight, or acute awoid; two to two and one-third times as long as hroad; thickly clothed with minnte slender spines appearing most prominently as a fringe on hind edges of dorsal plates. Eight to ten spines upon each regment from two to eight, two or three of these stand quite closely together in a group upon each side, and the middle pair stand very closely together upon segments two to five. but separate more widely upon following segments and become larger; spines upon last two seg-
ments short, weak, and not strongly radiating. Segments two to seren marked with a very prominent dark-brown cross line at anterior third of each; on each side of these segments hehind this line is a more or less extensive hrown shading which on seven extends clear across the back; ground color of these segments is white or pale yellowish gray; eight, nine, and ten are without the brown markings, and are pale or dusky yellowish.

Male.-Similar to female with the following exerptions: Length 0.64 mm . width of thorax 0.19 mm . : abdomen only four-fifths as wide as thorax, and more than twice as long as wide, nearly eylindrical to serenth segment; eight to ten conoid; spines upon last segment short; the testes large and brownish orange.

Relative lengths of antemnal segments:

$$
\begin{array}{cccccccc}
\frac{1}{4} & \frac{2}{7} & 3 & \frac{4}{10} & \frac{5}{9} & \frac{6}{10.5} & \frac{7}{2} & 8 \\
\hline & 10.3 & \frac{8}{10}
\end{array}
$$

Ter. ". femell.-Head and front third of prothorax elear, pale yellow: pterothorax darker yellow: hind part of prothoman and metanotum abruptly brown; abdomen pale yellowish with rery conspicnous dark brown cross-streak at first third of segments two to seven; on each side behind this streak is a narrow brown shading which upon seren extends clear across the back. Fore wings slightly tinged with yellowish, darkest at base. Brown spot on femora above, darkest on hind femora. Abdomen acute oroid.

Food plants.-Clematis, clover, elm, hackherry.
MaZitut.-Iowa, Massachusetts.
"Tar.b. mule and female.-Body pale yellowish, immaculate; apical joints of antemme black, remainder pale; wings and fringes tinged with yellowish."-Beach.

Food plunts.-Hawthorn, hackberry.
Mabitet.-Iowa.

- F'er. e. mate and femule. Wings nearly uniformly fuliginons; last three joints of antemme, distal half of joints t and 5 black, sometimes intermediate altogether dusky; brown markings very distinct, confined to two large spots on thorax and sintellum respectively, the latter oblong and approximating posteriorly; abdomen immaculate." Beach."

Food plents.-Hawthorn, hackberry.
Mrebitet.-lowa.
"Tar. d. male and femele.-This variety is characterized by having the wings fuliginons, trifasciate with white bands, and in being more

[^2]$$
\text { Proc. N. M. rol. xxyi-02- } 10
$$
heavily marked with brown: the markings on the thorax and bands at bases of first, second. and third (sometimes of second and third only), and serenth and eighth segments of the abdomen are extended until they coalesce and form broad hands; the dorsal surface of the head is brown: sometimes all of the caludal segments are brown; the logs are white. with brown streaks on dorsal surface of femora, and frequently on tibiak also: antemme same as in preceding variety." Beach.

Forenl phants. - Cucumber, gratis, smartweed.
Ihchitut. Iowa, Matsmalchnsette.

PSEUDOTHRIPS, new genus.

Head much broader than long. Ocelli present. Maxillary palpu threr segmenterl. Antenna eight segmented (apparently wine segmented, owing to an apparent division of the sixth segment). Prothorax much longer than head and somewhat broadened posteriorly; one stont spine at cath hind angle. Wings with two longitudinal reins which, with the costa, are thickly and regularly set with quite prominent spines: fore fringe well developel. Abdominal segments two to eight, inclusive hear across the middle of eath dorsal plate four weak spines, of which the middle two are close together upon anterior segments but diverge posteriorly.

This gemus is erected for the single species inequatis.
(忟v $\delta \omega$, false: Aput.)

PSEUDOTHRIPS INEQUALIS (Beach).

Plate 111, figs. 30-3:.
Thrips inequalis Beach, Proc. Iowa Acarl. Sciences, 1895, III, (1896), pp. 223-224.
Femule.-Lengeth 0.85 mm ; width of mesothoriax, 0.22 mm . general color yellow; thorax and ablomen tinged with orange.

Head fully one and one-half times as broad as long, slightly constricted at hind elge, and retracted into the prothorax somewhat; cheeks full; anterior margin nearly straight. Eyes of medium size, rounded, slightly protruding, slightly pilose; ocelli large, well separated. With orange red margins; ocellar bristles present, but not very long. or prominent. Mouth cone moderately sharp and somewhat shaded with brown at tip: maxillary palpi three segmented. Antenna over two and one-half times as lomg as head; eight segmented, though there appear to be nine segmonts: relative lengths of segments as follows:

$$
\begin{array}{cccccccc}
1 & 2 & 3 & t & \frac{5}{5} & \frac{6}{8+2} & \frac{7}{2} & \frac{8}{3} \\
\pm & 7 & 8.5 & 8.5 & \frac{1}{8} &
\end{array}
$$

Sogment six has a distinet ammation around it at fonr-fifthes its length, thr outer part appearing much like a separate segment. Segmonts one and two quite stout and romoled; three in'regulary, and four regularly clavate: seren and eight cylindrical. segment one palor than two. concolorous with head: three to six pale yellow in
hasal parts, shading to dark hrown toward the tips; seren and eight dark hrown; spines distinet hut not prominent, becoming more slender toward the tip.

Prothorax about one and one-half times as long as head, and one and one fourth times as broad at posterior edge: sides nearly straight, diverging hackward; dorsal surface hearing a number of small. dark spines, mostly near lateral and posterior borders; one stont, prominent spine at each hind angle. Mesothorax orer one and one-half times ats wide as head: sides rounded and converging anteriorly; fore angles prominent. Metathorax but little narrower than mesothorax; its sides mearly parallel, curving invard aboptly at hind angles. Wings reaching almost to tip of abdomen; two longitudinal veins quite prominent; both reins and costa thickly and regularly set with prominent dark brown spines: costal twenty-four to twenty-eight, fore rein eighteen to nineteen, hind vein ten to eleren, seale five, internal one. Fore wing about one-fifteenth as broad in middle as long, shaded faintly yellowish: costal fringe well developed. Legs dusky yellow, quite slender: fore femora slightly thickened: femora and tibie bearing mumerous short spines; inner side of hind tibie with hut few stonter spines except one pair at tip; each hind tarsal segment with one stout, dark spine on the side: a dark brown spot on under side of each tarsus at tip.

Abdomen elongate-orate; few dark spines along the sides: segments two to eight bear aeross the middle of each dorsal plate four weak spines, the middle two are close together upon anterior segments, but diverge posteriorly: posterior edge of nine bears a circlet of six stont spines, the median pair being only slightly more than half ats long as the others. All spines on hody, and spines and fringes on wings conspicuonsly dark brown; abdomen dusky yellow, dark brown at extreme tip.

Redescribed from one female, "Type" of Miss Beach.
Male unknown.
Forrel phent. -Aster.
Habitut. - Ames, Iowa.
This species bears a close gencral resemblance to Eutheips tritici, with which it was taken.

Genus EUTHRIPS Targioni-Tozzetti. PHYEOPLS."
Ocelli usually present but sometimes more or less rudimentary. Antenne eight segmented. Maxillary palpi three segmented. Pro-

[^3]thorax as long or somewhat longer than the head, with two long spines upon eath hind amgle and one similar spine upon each anterior angle in many species, but this is wanting in others. Legs usmally marmed, but in a few species with astout tooth on under side of fore tibia at end. Wings nsually fully developed hut sometimes reduced. When present they are moderately broad, have two longitudinal veins which are set with numerons stont ,pines at regular intervals in those species having a spine at the fore angle of the pronotum. Spines upon ablomen moderately stont: anal spines long and slender.

These species are active and can spring.

> SYNOINLS OF SPECIES.

EUTHRIPS TRITICI (Fitch).

WHEAT THRIPS.

Plate IV, figs. 36-39.

Thripstritici Fiter, Count. (ient., VI, Dec. 13, 1855, p. 385.
Thrips tritici F1tcin, Rept., II, Nox. Ins. N. Y., 1857, pp. 30t-30s.
Thoipstritici Asmmead, Orange Insects, 1850, p. 72.
Thrips trifici Osborx, Canad. Entom., XV, 1883, pl. 152, 156.
Thrips tritici Osborx, Trans. Iowa St. Hort. Soc., XVIII, 1883-1884, pp. 520-521; Coll. Bull., 2, Iowa Agrl. College, 1885, pp. 96, 97.
Thrips tritici Hublard, Ins. Affect. Orange, 1885, p. 164, fig. 77, pl. xi, fig. 5.
Thrips tritici Forbes, Centralia, Ill., Sentinel, 1887; Prairie Farmer, June 4, 1887.
Thrips tritici Lintwak, Cult. and Count. Gent., LiI, June 9, 1887, p. 459.
Thrips tritici Wees, Prairie Farmer, LIX, 1887, p. 343; Trans. Ill. St. Hort. Soc., 1887, M1. 2:0-233.
Thrips tritimi ()sbomes, Insect Life, I, 1858, 1. 141.
Thrips tritici ${ }^{1 / 2}$ ess, Popular (tarlening, I11, 1888, p. 176.
Thrips sp. Comstock, Bull. XI, Cornell Agr. Exp. Sta., 1889, 1. 131.
Thitys tritici Ram-Howamd, Insect Life, I, 1889, p. 340.
Thrips tritici Fokmes, 16th Rept. St. Entom., Ill., 1890, p. ix, pl. v, fig. 4; 17th Rept. St. Entom., H11., 1891, pp. xiii, xv.
Thrips tritici Wees, Ins. and Insecticides, 1891, p. 95.
Thrips tritici Forbes, Insect Life, V', 1892, pp. 126, 127.
Thrips tritici ${ }^{W}$ ebster, Bull. 45, Ohio Exp. Sta., 1892, pp. 207, 208.
Thrips tritici Townsexis, Canad. Ent., XXIV, 1892, p. 197.
Thripstrifici Bkuxer, Rept. Nebr. S't. Bd. Agr., 1893, (1893), p. 457, fig. 96.
Thrips tritici Bruner, Nelr. St. Hort. Rept., 1894, (1894), pp. 163, 214, fig. 82.
Thrips tritici Asmmead, Insect Life, VII, 1894, p. 27.
Thrips tritici Craw, 4th Biennial Rept. St. Bel. Hort., Calif. for 1893-94, 1894, 1. 88.

Thrips tritici Wead, Ins, and Inseeticides, 1895, D. 146.
Thrips tritici Uzel, Mon. 1]. Ord. Thywanoptera, 1895, pp. 220, 278.
Thrips tritici sumin, Econonic: Entom., 1896, 1. 102, fig. 73.

$$
\begin{aligned}
& \text { Thrips tritici Lintame, 11th Rept. N. Y. St. Entomı, 189\%, 11!. 247-250). } \\
& \text { Thrijestrilici Rows, 10th Am, Neret. Fla. St. Hort. Sore, 1897, 1. } 97 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thrips tritici Powers, Fla. Farmer and Frnit Grower (editerial), March 27, } 18: 7 . \\
& \text { Thrips tritici Quantance, Bull. 46, Fla. Agr. Exp. Sta., 1898, py. 7̄-103, figs. 1-9. } \\
& \text { Thrips tritici Howard, Bull. 18, N. S., U. S. Dept. Agri., 1898, p. } 101 . \\
& \text { Thrips tritici Rolfs, } 11 \text { th Amm. Meet. Fla. St. Hort. Soc., 1898, pf, : } 4-3 \text { - } 5 \text {. }
\end{aligned}
$$

Female．－Length ahout 1．22 mm．：width ahout 0.26 mm ．（ioneral color brownish yellow，thorax tinged with orange．

Head threc－fourths as long as broad and four－fifthe as long as pro－ thorax，but slightly withdrawn therein；cheeks but slightly arched behind the eyes and converging slightly posteriorly；anterior margin very nearly straight；back of head transversely striated．Eyes large， dark，and slightly pilose，occupying together about three－fifth，the width of the head：ocelli present，sul－approximate，pale yellow，mar－ gined inwardly with bright reddish orange crescents；spines between ocelli on each side long and conspicuous；post－ocular spines shorter． Maxillary palpi three segmented．Antenne nearly two and one－half times as long as the head；relative lengths of segments：

$$
\begin{array}{cccccccc}
\frac{1}{6} & \frac{2}{8.7} & \frac{3}{13} & \frac{t}{12.3} & \frac{5}{5.5} & \frac{6}{12.5} & \frac{7}{2.2} & \frac{5}{4}
\end{array}
$$

Color：One pale yellow：two light hrown，base sometimes yellowish； three light yellow in basal half，remainder shaded light brown；four and five brown，yellowish at bases；six，seven，and eight brown． Spines upon antemnal segments，especially two to tive，quite stout and сонгрісноия．

Prothome rather rounded，three－fourths as long as hroad；one pair of stout spines at each angle，also one short anterierly directed spine standing close to lower one of each fore pair；hetween each posterior pair and median line stands a row of tive spines，momher four alone being large：color of prothorax pale orange－yellow．Menothorax rounded at anterior angles；mesonotal plate with one stont spine at each lateral angle and two pairs of small spines on posterior margin． Metathorax tapering but slightly posteriorly：metanotal plate bearing four spines close together at anterior edge，the middle pair being much more stout and conspicnous．Wings nearly reaching the end of abdomen；breadth at middle about one－twelfth their length；shaded but slightly；each fore wing has two longitudinal veins extending from base to tip of wing；spines on veins at regular intervals：costa twenty－ six to twenty－eight；fore rein twenty to twontr－two；hind vein fiftern to eighteen：scale fire interior of scale one；a light．sparse fringe on costa of each wing：posterior fringes heary and wary．Legs clear pale yellow，sometimes slightly shaded with light hrown above，quite thickly set with short brown spines；a pair of stout spines at extremity of each tibia；rows of spines on imer side of hind tihie rather weak．

Whdomen evlindrial-ovate. pointed at the apex: dark brown stripe
 (exeptet nine and ten, shaded more or less with brown; there or four moderatcly stout hrown phines stand out prominently upon the pale yellow sides of segments two to cight; terminal spines longe, stout, and dark (rolored: tip) of abdomen dark hown.

Redeseribed from eight females.
Julr. Lengeth about 0.7 mm . ($0.6 \pm$ to 0.80 mm) ; width of mesothorax 10.19 .5 mm . (0.18 to (1.22 mm .). (Xeneral color pale yellow, darkest upon pterothorax.

Eyes somewhat smaller than those of female. Anteme aboint two and one-third times as long as the head. Relative lengths of segments as follows:

$$
\begin{array}{cccccccc}
1 & \frac{2}{8} & \frac{3}{11} & \frac{4}{10.3} & \frac{5}{7.9} & 6 & 70.1 & 1.6 \\
4.3 & \frac{8}{2}
\end{array}
$$

Wings large and reaching beyond the tip of the abdomen. End of abdomen (ninth segment) bluntly conical; tenth segment retracted and not reasching the tip) of the ninth; nine bears four pairs of long. stout, dark spines, of which one pair stands on atch side near the anterior end of the segment, and one pair on each side near the tip; near the middle above stand two short spines.

Described from four specimens.
Fomel plants.-Alfalfa, apple, asparagus, aster (cultivated), bindweed, blackberry, battereup, camna, cherry, clover, cone-flower, dandelion. dog-tooth riolet, English pea, goldenrod, grasses, hardhack, heal-all, heliotrope. honeysuckle. hydrangea, lilies, mesquite, orange, pea. peach, pear, pink, plum, potato, raspberry, red clover, rose, shrubhy Althen. smartweed. Solidngo bicolor. Spimentlews simplex, squash, strawbery, sunfower. sweet willian, wheat.

Ilulitut. - Califormia, Distriet of Colmmbia, Florida, Illinois, Iowa, Massachusetts, Now Hampshire, New Jersey, New Mexico, New York.

The following descriptions of early stages are taken from Quaintinnce:"

Lefg-Size (0.2.) hy 0.1 mm . (clear whitish in color'; oblong, curved in shape.

Lareme first stage. -Length about 0.5 mm . F width of thorax nearly O. 1 mm.: hody fusiform, gradually tapering caudad from fifth or sixth abolominal segment. Color. clear whitish; pyes reddish. Antemme distinctly four-jointed: basal joint cylindrical, short: second somewhat urn-shatped, with distinet distal rime about as long as broad; third joint conical, apex of cone united to second: fourth fusiform, widest near basal fourth, quito as long ats other three joints together. Joints two, three, and four ringed, two and three rather obsemrely, but on fourth joint the rings are quite pronommed, where, on distal part, they
appear to divide the joint into short. eytindrical segments. On the fourth joint the rings are minutely setate. Numerons large setie are ako present on all joints, most mumerous on fourth. Legsstont; hind femur about as long as tibia; tarsus one-jointed, terminating in clawlike fork: hadder-like expansion of adults apparently wanting. Abdomen composed of ten segments, marked dorsal!y with four longitudinal rows of setex and a row on each side. All of these sete appear to be somewhat enlarged and rounded distally, except one pair on dorsum of last segment. On tenth segment these seta are quite long, being from two to four times longer than the others.

Lirrea, secumd stage. - Length ahout 1 mm.: width of thorax abont 0.22 mm .; shape about as in stage one. Color of body deep orange vellow: logs and antenna lighter; eyes reddish; antenne four-jointed, as in first stage; hasal joint short. cylindrical, about one-half as long as wide: second. subeylindrical, somewhat longer than wide; third, subconical, about a third longer than wide: fourth, ahout at long as proximal three together, fusiform, thickest about hasal fourth. .Joints three and four plainly ringed, the rings of fourth joint quite distinct and minutely setate, as in first stage. Large seta are also present about as in stage one. Femur of hind legs about as long as tibia; tarsus one-jointed, somewhat forked distally, and bearing a membranous expansion.

Nymph or pupu. young nymph.-Resembles the full-grown larra in shape; in color it is much lighter, being light yellow, with legs, antenne, and wing-pads still lighter. Eyes reddish.

In the antemax, legs, and wing-pads the nymph skin appears somewhat as a sheath to these parts of the forming adult. The antemne are three or four jointed. apparently, thick and clumsy. The hasal joint is large, swollen, slightly longer than wide; the second is about twice as long as wide and somewhat constricted in middle. Third joint is about a third longer than second, gradually tapering distally to an obtuse end. When the nymph stage is first entered the antenne project cephalad in normal position. In six or eight hours, however, they are laid back over the head and prothorax. In the hind legr, femur and tibia of about equal length; tarsus indistinctly one-jointed, very short, and romoded distally. Wing-pats short, scarcely reaching caudal end of second abdominal segment, bearing one or two seta. Abcomen as in larra, with dorsal and lateral rows of sete, which, however, are acute. On the dorsum of ninth segment, near caudal margin, are four stubby, hook-like processes, curving cephalad, which appear to be the four modified setie of this region.

Mruture $n y m p /$.-Length about 1 mm .; width of thorax about 0.22 mm . ; color light yellow; shape very similar to that of adult Thrips. Nymph skin more or less separated from the horly of the adult within, particularly so in the legs, antemme, mouth-parts, wing-pads, and
catulat cond of ablomen. 'The wing-parls reach to about the sixth segment.

Lifi history. - "The life cyele of Thripstritici is quite short, requiring bit twelve days. Eggs are deposited in the tissues of infested plants, and hateh in three days. The larval state lasts for about five days, during which time the insect makes two molts, the second when entering the nymph stage. The nymph stage continues for about four days, during which time they take no food, rarely move to any extent. hat remain hidden away.

Eronnmic considrortions. -This is one of the most widely spread and generally injurious species in this country. The specimens from which Fitch described the specties were taken at Genera, Wisconsin, from at wheat fiek which was being injured by the little pests. At various times it has been noticed swarming in the hlossoms of orange and causing injury thereto. It is a very common species on a large mumber of flowering plants, both wild and cultivated, hut unless present in great mumbers their injuries are likely to pass monoticed. By far the greatest damage appears to be done to strawherres, in the blossoms of which they swarm, and by their punctures of the essential parts of the flower they prevent its fertilization and the consequent derelopment of the fruit. This failure of hloom, though perhaps produced at times hy other insects and in other ways, is known to growers as "buttoning." The most serious injuries have heen reported from Florida and Illinois. In Florida the strawherry crop in some sections hat been redued to one-third in dry seatsons.

EUTHRIPS OCCIDENTALIS Pergande.

Thrips sp. Coqullett, Ins. Life, IV, 1891, 1. 79.
Euthrips ocritentalis Pewisinide, Ins. Life, V1I, 1895, 1. 342.
Frmmle.-Length abont 1 mm ; width at mesothorax about onefourth the body length. General color head pale lemon yellow, thorax orange yellow, abdomen brownish yellow.

Head about one and one-third times as broad as long, three-fourths as long as the prothorax and considerahy withdrawn into the latter. Eyes rather large, oecupying together about three-fifths the width of the head, dark, slightly pilose; ocelli subapproximate, pale yellowish, margined with reddish orange creseents; one very prominent spine between ocelli on each side; post-ocular spines rery conspicuons. Maxillary palpi three segmented. Antemar about two and one-half times as long as the head; first segment slightly shorter than the style; two is one and one-half times as long as one; three is longest; four is six-serenths atong as three; five is five-sixths as long as four; six nearly as !ong as three; seven very short, about one-fourth as long as five: cight is one and three-fifthe times as long as seven. Color of onetramslucent whitish; two brownish yellow (uniform), basal parts of
three, four, and tive pale rellowish: apial parts shading quite abruptly to light brownish; six uniformly hrown: style slightly lighter than six. Spines upon antemal regments, especially two to four, are unsually stout and prominent.

Prothorax nearly one and one-third times wide as long; color intermediate between that of head and pterothorax. One pair of prominent, stont spines at eath angle: one short anteriorly directed spine close to the lower one of eath fore pair: a row of tive small spines (the fourth is stontest) stands on each side of hind margin between pair at angle and median line. Anterior angles of mesothorax rounded; metathorax slightly narower than mesothorax. its sides nearly straight and parallel; mesonotal plate hears one stout spine at each lateral angle and two pairs of small spines on posterior margin; metanotal plate bears two pairs of spines close to anterior edge the middle pair being much the stouter: color of pterothorax bright orange. Wings very slightly yellowish; hoth longitudinal reins extend from base to tip of wing: beth internal and the costal veins bear very stont, hrown spines set at regular intervals: costal twentyfour to twenty-six, fore rein nineteen to twenty-two. hind rein fifteen to eighteen, scale five, intermal on scale one. Fringe upon costal edge is very light. that upon hind edge is long and wary; cross veins can sometimes be seen between the longitudinal reins and between the fore and costal reins at about two-fifthe their length from base and sometimes a third at about four-serenthe between the fore and costal reins. Legs miformly concolorous with head, bearing mmerons small spines; a pair of strong spines at inner side of tip of each tibia.

Abdomen elongate-ovate in outline, conical at apex: a transerse, narrow, brown band extends across anterior part of segments three to seven: brownish tinge on abdomen fades behind sixth segment leaving only the apex of the eone brown; a group of three or four stout spinew stands upon each side of segments two to eight; teminal spines long. stont: all spines brown.

Male.-Length about 0.65 mm . ; width abont 0.15 mm . Lighter in color than the females; nearly a uniform lemon yellow. slightly darker on throx: form more slender; apex of abdomen hlunt, terminated on sides by two pairs of long, stout, inward curving spines; ninth segment also hears two pairs of very long, stout spines near its posterior border and near the dorsal line on this segment is a pair of short spines; the brown hands across the ablomen of female are wanting in males and the have ferwer spines on sides of segments; the bright orange-colored testes are very prominent.

Forel plants.-A pricot, orange, potato, and varions weeds.
Hubitut.-Californiat.
Redescribed from specimens at the U. S. Department of Agriculture, Division of Entomology-presumably types.

Pammpe. This species is very similar to liuthripestritici (Fitch), but it has a longer though more retracted heal, which is also slightly wider: the terminal segmont of the antemat is one and three-tifths times as long as seven: spines on body stouter and more prominent. Both Euthrips tritici and Euthrips occidentatis approath very closely to I'hysomplex nigriventris Uzel.

EUTHRIPS FUSCUS, new species.
Plate IV, figs. 40, 41.
Framule. Length 0.93 mm . (1). 00 to 1.08 mm); width of mesothorax 0.21 mm . (0.18 to 0.24 mm .). (reneral color brown. In dark specimens the abdomen is blackish brown; in light specimens the general color is yellowish brown.

Head about one and one-half times as wide as long, about one-fourth retracted into prothorax; oceiput deeply wrinkled transsersly; anterior margin of head slightly and smoothly elevated in middle: cheeks straight and parallel. Eyes moderately large, occupying together about one-half the width of the head, dark, slightly protruding; margins pale yellow: ocelli smaller than facets of eye, pale yellow, margined with dark red, widely separated, posterior ones contiguons with yellow margins around eyes; one stout spine in front of each posterior ocellus. Mouth cone short and tapering abruptly; maxillary palpi slender, three segmented.- Antemae inserted a little below the margin, ahont three times as long as dorsal length of head; relative length of segments:

$$
\begin{array}{cccccccc}
\frac{1}{5.5} & 2 & \frac{3}{8.8} & \frac{4}{10.4} & 5 & 6 & 7 & 8 \\
10.2 & 9 & 11.7 & 2.3 & 3.3
\end{array}
$$

First segment rounded, one-third broader than long; two is cupshapert: three to six subequal in thickness; three to five somewhat elavate; three with very slender peduncle; six cylindrical-ovate. Antenne cuite uniformly brown (sometimes three, four, and five lighter gray-brown, expecially at hases), only segment three somewhat more yellowish: spines on segments two to five quite stont and dark colored. Color of head miform grayish to orange-hrown.
l'rothorax fully one and one-half times as wide as long and one and two-lifthe times as long as the head; sides arehed; angles rounded; wider behind than in front; one large curved spine at each anterior angle and another on anterior margin between this and the median line: two stont spines at each posterior angle. the imner one of which is much the weaker; also a stout spine on the posterior edge between the pair and the median line; other spines on prothorax small and not conspicuons. Mesothorax but rery little wider than the prothoma; projecting prominences at anterior angles: mesonotum broad, withont
prominent spines: posterior edge nearly straight for one-third the width of the sigment; metathorax narrows abmptly after the anterior edge till narower than prothorax, then sides run nearly parallel to abdomen: mesonotum with two pairs of spines near anterior edge, the outer one of each pair being much less stont than the inner one: mesothorax and metathorax together not longer than the prothorax. Wings reduced. barely reaching to the first abdomimal segment; pads set with several stout spines. Legs of medimm length and of moderate size, quite thickly set with short bristles, eoncolorons with, or usually lighter than hody; bases of posterior femora and immer sides of posterior tibiex more yellowish; thorax colored neanly like head.

Abdomen one and one-half times as wide as the mesothorax (shortwinged femate) and twice as long as broad, or nearly twice as long as head and thorax together; elliptical in ontline except that apex is conical; broad, dark bands cross the abdomen at the anterior edge of dorsal plates on segments two to eight. Each segment except one and ten bears two or three short, stont spines on sides: in addition to these nine bears a cirelet of eight unusually long, strong spines, and ten also hears a circlet of six long spines thongh these are some what shorter than those on previous segment. Segment ten is split open above; color of abdomen yellowish brown to brown-black, usually considerably darker than head and thorax; segments usually more or less telescoped.

Deseribed from eighteen short winged females taken in hibernation in February and November.

Cotype.-Cat. No. 6322. U.S.N.M.
Frood plent. - Grass?
Mabitut.-Massachusetts.
Life history unknown.

EUTHRIPS NERVOSUS (Uzel).

Plate III, figs. 33, 34; Plate IV, fig. 35.
Physopus mercosf Uzel, Monographie d. Ord. Thysanoptera, 1895, p. 102.
Thrips (Euthips) muidis Beach, Proc. Iowa Acad. Sciences, 1845, III (1896), p1. 219, 220 .
Female.-Length 1.33 mm . (1.22 to 1.39 mm .): width of mesothorax 0.32 mm . (0.28 to 0.8 t mm.). General color dark yellowish brown.

Head somewhat pentagonal in form, not as long as wide; cheeks straight and converging slightly posteriorly; front broad and oltusely angular: back of head transersely wrinkled and bearing a few minute spines. Eyes rather small, back with light yellow horders, rounded or oval in outline; ocelli yellow, widely separated, posterior ones contiguons with light borders around eyes; one rery long slender spine on each side midway between ocelli. Mouth cone pointed, tipped
wilh hiack: maxillat? palpi thee segmented. Antemme slighty more than twioe at long as head and resy sonder beyond second segment: comparativo lengethe of sesments ato foilows:

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
& 10 & 1+ & 12.5 & \frac{5}{11.4} & \frac{1}{15} .3 & 3 & \frac{4}{4}
\end{array}
$$

Color of antenne dark brown, except segments three and four and extreme base of five abruptly yellow. Spines on first segments quite dark and conspicmons, becoming paler and more indistinct toward the tip.

Prothoma approximately as long as head and a little wider, almost rectangular in form, bearing many prominent spines; one at each fore angle and two at cach hind angle are longest: one half way between fore angle and median line on front margin and one similarly placed on hind margin are intermediate in size: nmmerons others are smaller. Cobor of head and prothorax dark hrown. Mesothorax approximately as wide as lengthof antemas: front angles oltusely romeded: metanotal plate bears four spines close to front edge, the middle pair being large and prominent, the others small: pterothorax yellowish hrown. Wings present, fully as long as the abdomen, ahont one-twelfth as broad as long. sharply pointed at ends; surface of wings thickly covered with minute, dark-colored spines: both longitudinal reins and costa of fore wing thickly and regularly set with quite long, dark colored spiner; costa has from twenty-five to twenty-nine, fore rein from sixteen to twenty-two, hind rein from fourteen to sixteen; fore wings shaded with gray; reins not prominent: costal fringe of fore wings weak and less than twice as fong as costal spines. Legs moderately long, not thickened; femora dark hrown, yellow at extremities; tibia and tarsi yellow: tibiee shaded more or less with brown around middle and tarsi with prominent dark brown soot at tip within; (alch tibia with a pair of prominent, dark brown spines at tip within and a row of from tive to serem short brown spines on imner side of hind tibier.

Abdomen about two and one-half times as long as width of mesothorax. some what cylindrical in shape, hut enlarging from base to hind edge of second segment and tapering evenly from eighth segment to tip. Spines along sides and around tip of ahdomen rery dark brown and conspicuons; those on segments nine and ten are long and suh)equal on both regments. Color of abdomen dark brown, shading toward tip; connective tissue yollow; last segment split open ahove.

Redescribed from six females: no males found. Compared and identitied with Thrij)s (Euthripes) merdis Beach.

Foorl phents.- Corn, rarions grasses (first spring flowers, Uzel).
Ilwitut.-Bohemia (Urol): Ames. Iowa: Amherst, Massachusetts. Life history unknown. exerpt that it hibernates in turf.

SCOLOTHRIPS, new genus.

Head wider than long, retracted considerably into prothorax. Eyes protruding: ocelli present. Maxillary palpi three segmented. Anteme short and thick; sense cones very long. Prothorax slightly longer than head and somewhat broadened posteriorly. Spines arranged as follows: One at each anterior angle, one half way between these angles and the median line, one at the middle of each side. two at each hind angle, and one between this pair and the middle of the hind margin. Wings present, slender, with two longitudinal veins and ring rein strongly developed; fore fringe very weak hut spines on veins rery strong. Intermediate abdominal segments with one spine on each side at the hind angle.

This genus is erected for the species C-mucmlutus.

SCOLOTHRIPS 6-MACULATUS (Pergande)
Plate IV, figs. 42-45.
Thrips 6-maculutu Pérgande, Trans. St. Louis Acaul., V, 1894, p. 542.
Thrips petlida Beach, Proc. Iowa Acad. Sciences, 1895, III, (1896), p1. 226-227.
Femule. -Length, 0.83 mm . (0.72 to 0.97 mm .); width of mesothorax, 0.21 mm . (0.18 to 0.25 mm .). General color clear pale yellow.

Head about three-fouths as long as wide, frequently considerably retracted within prothorax, even to the eyes sometimes; cheeks straight and parallel; front margin rounded; vertex elevated between the eyes. Eyes large, protruding: posterior ocelli nearly contiguous with margins of eyes; one very long, backwardly curved spine stands in front of each posterior ocellus, and two pairs of curved spines stand upon the margin in front. Maxillary palpi slender, three segmented; labial palpi very long and slender. Antennex rather short and compact; inserted below front margin; approximate at base, relative lengths of segments:

$$
\begin{array}{cccccccc}
\frac{1}{4.2} & \frac{2}{7} & \frac{3}{7.4} & 4 & 5 & 6 & 7 & 5 \\
\hline 4.7 & 6.1 & \frac{6}{9} & 2.5 & 3.5
\end{array}
$$

Segment one cylindrical, about two-thirds as thick as two, which is more rounded; seren and eight rather thick. Color of one and two nearly white, the remainder almost uniformly dusky gray: spines on segments two to tive long and prominent as are the sanse cones; the sense cone on the imer side of six arises below the middle of the segment and reaches beyond the end of the seventh.

Prothorax slightly longer than the head, but only about three-fourths as long as wide, broadened somewhat posteriorly and rounded at hind angles, sides curving gently inward anteriorly; spines extremely long and slender, arranged as follow:: One at each anterior angle, one half
way betwern these and the median line, one at middle of each side, two at cach hind angle and one between this pair and middle of hind margin. Iteothorax abont one and one-third times as wide as the prothorax. with one slender apine at middle of mach side. Wings long, reaching marly to tip of abdomen, at milde about one-serenteenth as hroad as long, pointed at tips. Fore wing with two longitudinal reins and a very heary ring wein: himd longitudinal wein branches from the fore rein at athout one-thint the length of the wing. Spines upon costal and both longitulinal veins very long and stont, fully equaling those upon the anal segmentw; costal vein bears from fifteen to twenty, fore win from nine to eleven, hind vein five or six (the thisd and fourth spines. sometimes the secomd also, which I have counted as standing upon tho fore vein, stand at the same angle to the wing as do thone upon the hind rein and really belong thereto, though the reins have united); the fromt fringe of the fore wings is extremely sparse, short and weak, and does not extend to the tip; hind fringes also musually short. Fore wings are characterized by three light hrownish sots on each -one at hase of wing, one immediately beyond separation of longitudinal veins, and the third halfway from the second to the tip of the wing (the third is a band extending clear arross the wing). Legs concolorous with body, sparsely set with slender spines.

Ablomen cylindrical-ovate, pointed at extremity, surface smooth; only one spine of any prominence at posterior side angles of segments two to eight: spinew upon segments nine and ten not as strong as those upon the wings: color nearty uniformity pale yellow without prominent markings.

Redescribed from ten specimems.
Mhato. Male smaller than female. but otherwise agreeing very closely with the foregoing description. Abdomen bhatly conical at tip; tenth segment partially retracted within ninth, which is cut out in last half above the tenth: spines borme on top and sides of nine are shorter and weaker than thowe on wings.

Described from one specimen.
Foren plant..- - Found on many plants infested with red spider. on which it hats repeatedly heen observed to feed."-Pergande. "Feeding on mites in fold of cottonwoot leat."-Bruner. Taken on bean, hackherry, elm, amd hop.-Beach.

Ilnhitert.-Missomi !; Ames, Iowa; hamalioo, Wisconsin; Lincoln, Nebraska.
 leen learned from an examination of her types.

> Genus RAPHIDOTHRIPS Uzel.

Ocelli present. Antemme eight segmented; the fifth segment short and cut off atruptly at the end so that it joins the base of the sixth by an unusually broad surface; style very slender, composed of two equally
long segments, which are together as long as are the fifth and sixth. Maxillary palpi three segmented. lrothorax a little longer than the head and somewhat broader at the hind than at the fore edge; no longe spine at the front angles, but two at eath hind angle. Legs unarmed. Wings usially reduced, hut when present they are of medium length, and have two longitudinal reins which are set with small spines.

I tind here only the new species fuscipenn is.

RHAPHIDOTHRIPS FUSCIPENNIS, new species.

Plate V , figs. 46-4s.

Fomale. Length 1.32 mm . (1.20 to 1.66 mm .) ; width of mesothorax 0.24 mm . (0.22 to 0.27 mm .). (ieneral color nearly uniform chestnut lrown.

Head as long as wide, but little shorter than prothorax, into which it is retracted a little; anterior margin slightly elevated and rounded: constricted a hit close behind the eyes; cheeks nearly straight behind the constriction and diverging slightly posteriorly so the head is wident at hind edge: back of head finely striated. Eyes quite large, rounded, protruding; margins light: ocelli present, larger than facets of eye, light colored with dark crescentic margins, well separated, but posterior ones not contiguons with margins around eyes; ofellar spines very long and conspicuons; post-oular spines quite large. Mouth cone extending back to anterior edge of mesosternum, slender, so that head from below appears considerably clongated; labial palpi mall; maxillary palpi quite long, slender, and three segmented. Antenne twice as long as head; relative lengths of segments:

$$
\begin{array}{cccccccc}
\frac{1}{5.8} & \frac{2}{9} & 3 & \frac{4}{1} & 5 & 6 & 7 & 8 \\
10.3 & 6.25 & 10.5 & 8.2 & \frac{8}{8.25 .}
\end{array}
$$

First segment shortest, cylindrical; second cup-shaped; third pedicellate; third, fourth, and sixth are approximately equal in thickness; third and fourth elliptical; fifth constricted at hase and inereasing in size to apex, where it is cut off abruptly and unites by its entire width to the equally broad base of sixth, which tapers gradually from onethird its length to its apex, where it is but slightly wider than seventh; seventh and eighth slender, cylindrical. Color: First and second miformly slightly lighter brown than head; third and fourth pale yellow with slight brownish tinge; fifth shading from color of fourth to a little lighter than sixth; sixth, serenth, and eighth gray-brown; spines long and fairly conspicnons.
Prothorax slightly wider than long, widest at posterior angles: sides but alighty arched; no prominent spines at interior angles; two stout sines stand close together at each posterior angle: surface finely striated and set with a few scattered small spines; hases of spines light
yellowish: pronotum frequently extending considerahly orer front edge of mesomotal plate. Nesothorax ahout one and one-thind times as wide as the prothorax and considerably wider than metathorax, exeppt at its anterior edge: anterior angles of mesothorax very acute: (10) conspicuonsly large spines upon pterothorax. Wings sometimes reduced: when present, long and about one-thirteenth as broad in middle as long: fore wings shated with gray, pate hrownish along wins, dear at hase: socond longitndinal vein arises at about two-fifth: the length of the wing, its origin indistinct. spines upon all veins (puite long and slonder. lut not thickly set or very conspicuous; costa hears serenteen to nineteen, fore rein eight or nine, hind vein eight or nime. Wing pads, when present, not orerreaching the pterothorax Legs moderately strong, hut not thickened; femora and tibie dark mown like borly: inside of fore tibia, extreme tips of the others and all tari pale gray or yellow: legs scatteringly set with fine spines apex of hind tibise alone bearing a pair of stonter spines.

Abdomen rery long-almost twice as long as head and thoras together-and three times an long as hroad, nearly cylindrical, taper ing ahmptly from anterior edge of eighth segment to the apex; seg ments orerlapping more or less when abdomen contains no eggs; colo uniform dark brown without conspicuous markings or spines excep those upon two terminal segments, which are quite long and slender.

Deseribed from six females. five of them long-winged.
ristype. ('at. No. 6329. U.S.N.M.
Male unkiown.
This speries agrees rery closely in most respects with R. Iongistylose Lzel, but differs in the following points: Head as wide as long; secons antemal segment somewhat shorter than third, fourth, and sixth; fiftl segment lighter colored at tip than sixth. Body length, average (exclu sive of (egg-filled females), 1.25 mm .

Fored plint. Grats.
Ifolitut.--Masachusetts.
Life history unknown.

Genus ANAPHOTHRIPS Uzel.

Orelli present. Antemat eight segmented (apparently nine i I. striutus.). Maxillary palpi three segmented. Prothorax about a long as head. Legs unamed. Wings usually present (usually absen in the fall generations of striutus). with two longitudinal veins; spine umon reins small and inconspicuons. No stout spines at angles of pro thorax: all spines on hody short exeept the anal spines, which are shot and slendere (in striathes they are short and stout).

Males have usially two pairs of very short, stout spines upon th ninth abdominal segment abore, of which the anterior pair is stronge that the posterior.

Species of this genus have no power of springing.
In this gemus I find only the species striatus.

ANAPHOTHRIPS STRIATUS (Osborn).

(IRASS THRIPS.

Plate V', figs. 49-51.

Limothris porphagus Comstock, Syllabus of Course of Lectures at Cornell and Peoria, 1875, p. 120.
Limothrips porphagus Lintner, Rept. N. Y. Agr. Soc., 1881-8².
Thrip's striata Osborn, Can. Ent., XV, 1883, p. 155.
Limothrips poophugus Fernald, (irasses of Maine, 1885, p. 42.

- N. E. Farmer, June 19, 1886.
-_ Lintwer, 3l Rept. Ins. N. Y., 1887, pl. 96-98.
Limothrips poophatue Comstock, Introd. to Ent., 1888, p. 127.
Thrips striutus Packard, Ent. for Beginners, 1888, p. 73.
- - Fletcher, Ent. Amer., I Y, 1888, p. 152.
- - Howard, Ent. Amer., IV, 1888, p. 152.

Limothrips poaphagus Osborn, Ins. Life, I, 188S, p. 140.
Thrips striatus Packard, Stand. Nat. Hist., 2d ed., II, Append., 1888.

- - Fletcher, 19th Rept. Ent. Soc. Ont., 1888, p. 11.
- - Fletcher, Ann. Rept. Exp. Farms, 1888, pp. 59-6\%.

Limothrips pouphagus Lintyer, Rept. N. Y. Agr. Soc., 1888.
Ihlocothrips poaphagus Fletcher, 20th Rept. Ent. Soc. Ont., 1889, pp. 2, 29.

- - Brodie, 20th Rept. Ent. Soc. Ont., 1889, p. 8.

Limothrips poophagus Lintwer, 5th Rept. N. Y. St. Ent., 1889, PP. 153, 304.
-——Osborx, Can. Ent., XXIIII, 1891, pp. 93, 96.

- - Fletcher, Ins. Life, V, 1892, p. 124.
——— Forbes, Ins. Life, Y, 1892, p. 127.
- - Fletcher, Aun. Rept. Exp. Farms, 1892, p. 3.

Limothrips poaphagus Cowstock, Man. for Study of Ins., 1895, p. 120.
Limothrips poaphagus Uzel, Mon. d. Ord. Thysanopt., 1895, pp. 279, 435, 446, 448.
Thrips striata Uzel, Mon. d. Ord. Thysanopt., 1895̆, p. 220.
-- Hopkins-Rumsey, Bull. 44, W. Ya. Agr. Exp. Sta., 1896, 1p. $270,271$.

- - Smith, Economic Eut., 1896, p. 102.
- - Putxam, N. E. Farmer, July 2, 1898.

Anaphothrips striuta Hinds, 37 th Amn. Rept. Mass. Agr. College, 1900, pp. 81-105, 4 pls., 33 figs.
Anaphothrips striata Fernald and Hinis, Bull. 67, Mass. Agr. Exp. Sta., 1!00, pp. 3-9, pl. I, figs. 1-6.
Female.-Length 1.3 mm . (1 to 1.6 mm .); width of mesothorax 0. 25 mm. (0.23 to 0.26 mm .). General color yellow, with more or less durky or brownish shading upon some parts.

Head rery slightly wider than long, rounded in front; cheeks straight and parallel ; surface back of eyes faintly striated; head yellow with brown posterior border, without long spines. Eyes small, rom black or very deep purplish red ; ocelli subapproximate, yellow, with orange-red margins. Mouth cone moderately sharp, and very prominently tipped with black; maxillary palpi three segmented. Antenne approximate, about twice as long as head, eight segmented, though

Proc. N. M. rol. xxri- $12-11$
apparently nime segmented, owing to the division of the sixth segment by in obligue suture at about threc-fourths its length. Relative lengtho of segments:

$$
\begin{array}{cccccccc}
1 & \ddot{y} & 3 & + & 5 & 1 ; & 7 & 8 \\
\therefore & 3.0 & 11 & 10 & 10 & 0.5+3.5 & 2.25 & 3.25
\end{array}
$$

segments one and two romaded: three to six fusiform. One is pale, almont white: two light hrown; three lighter than two; three to six shading gradually to dark hrown. almost hack; spines pale and not (omspicuous.

Prothorax but slightly longer and a little wider than the head; sides ronuded slightly and without prominent spines. Mesothorax much wider than prothorax; fore angles ohtusely rounded. Metathorax quite smoothly joined with mesothorax and tapering gradually to base of addomen. Wings nsually present in summer generations, reduced to mere pads in hibernating females; when present, approximately as long as abdomen, ahout one-thirteenth as broad as long and tapering gradually; two longitudinal reins in fore wing extending from hase to tip: reins quite prominent, being darker than rest of wing. All reins bear a few very small, rather indistinct spines; fringe on fore edge well developed, being nearly half as long as postorion fringe. Fore wings shaded with yellowish gray: hind wings neally white. Legs of medimm length and size: stont spines only on imner side and at tip of hind tibia; legs pale yellow shaded with light gray or hrown above on femora and tibiee and with prominent dark brown apot at tip of tani within. Pterothorax darker yollow than rest of bocly. with row of irregular dusky spots on each side close to middle. curving outwardly at hoth ends.

Ardomen quite long, cylindrical, widening somewhat at first two segments and tapering from cight to tip; eight to ten sharply conical. spines on mine and ten short and weak. hat dark-colored and quite conspicuous: other spines on athlomen small, pale, and indistinct. Abdomen pale pellow: segments one to seven slightly dusky on top, segment ten shading to dark brown at tip.

Roderribed from six long-winged and four short-winged females. Mate unknown.

I have atwo found genume "silver top" upon the following list of grases at Imberst, Massachusetts, but I can not positively connect this species with all the injury: Pone serotime, I ? nemormlis, I ? com-
 masia, Aypost is ulbu, A. canimu. A. stolouiferu, A. rulyaris, Festuca
 I'inicumer imes-gulli, I'. semguinule, Elymus striutus, E. virgimicus,

ILubitut.- Illinois, Iowa, Maine, Massachusett., New York, Ohio, Ontario.

I have sought in vain for the males of this species, for although I have mounted orer a thousand specimens, and have bred many more in bottles in the laboratory, and have taken and examined large numbers of them in the field, I have never seen any that I even suspected were males. A series of experiments begun in the laboratory in July and continued into December showed that no males are developed in the autumn generations. Experiments were begun the following season by obtaining hibernating females before the weather was warm enough for them to move ont of doors and confining them in bottles in the laboratory. These became active and deposited eggs, from which succeeding generations dereloped without the appearance of any males. 1 conclude, therefore, that this species is parthenogenetic, and reproduces without the intervention of males, at least for a series of generations, in this locality.

The following descriptions are of the early stages:
Egg..-The eggs are reniform, and vary in length from 0.265 mm . to 0.33 mm . and in width from 0.085 mm . to 0.145 mm . The arerage dimensions taken from twenty-five eggs are: Length, 0.288 mm . width, 0.11 mm . The color is a translucent white. By transmitted light the eggs are seen to be filled with a mass of yolk globules which rary considerably in size.

Laron. - As the larva emerges from the egg it is very soft, shiny, and nearly white. The eyes are purplish red in color; the appendages are folded closely against the rentral side of the body. The length soon after emergence is about 0.3 mm . and the width is about 0.1 mm . Body tapers from eighth segment to tip; head is nearly as wide as the thorax. Antemme are comparatively large, approximate at hase, and composed of seven segments, of which the last four are closely joined and appear almost like a single conical segment; fourth segment is larger than any other, and distinctly ringed with whorls of minute hairs; the second and third are indistinctly ringed; hasal segment bears one small spine on inner side; two has four spines which are directed forward and one very long spine which is directed backward toward the head; the third bears five short spines, and the terminal part of the fourth and each of the following segments a number of spines, which are quite long and stout. Legs are stout; tarsi one segmented and terminated by two claws. The bladder-like expansion is present. Abdomen much compressed longitudinally and, except the tenth segment, marked with six longitudinal rows of seta, three pairs to each segment. The four dorsal rows also extend forward along the thorax and head; tenth segment bears six-very long setie-two dorsal, two lateral, and two ventral.

The full-grown larva is fusiform, about 1.2 mm . in length and about 0.3 mm . in brealth, while the width of head is about 0.1 mm . Antemme
seren segmented, somewhat separated at their base and rather thick for their length; color darker than that of the body, often nearly hack: segmentation beyond fourth segment more distinct than in immature larvat; first four segments subequal in thickness, and third and fourth nearly cyual in length, and each as long as the first and recond segments together; last three segments mneh smaller; fifth shortest. Fpines arranged much as in younger stage; third segment distinctly ringed and withont setie. Each segment, except last two, bears short spines which are slightly thickened at their extremities, and arranged as in the young larva; spines on last two segments long and accute. Integument of body roughened by transverse rows of clearty defined ridges. Body marked by dorsal and lateral longitudinal stripes of yellow which are most distinct upon thorax; dorsal stripe widest.

P'inm. - Its general form resembles that of the larva; color of legs, wing pads, and antenne clear white; thorax and abdomen very light yellow; "yes hright red. When the pupal stage is first entered the antenmare apparently three or four segmented, much shortened, and directed forward as in the larva; but after a few hours they are laid back upon the head and thorax. Wing sheaths short and developed ontside of the body; legs thick and clumsy. Upon dorsal side of ninth segment, near posterior margin, are four prominent, stout, recurved, hook-like processes; abdominal seta slender and acute. Wing sheaths finally extend to the sixth segment and fore pair bear a few small spines.

Life history. - About 98 per cent of the adults which hibernate are of the short-winged form, while from 90 to 95 per cent of the first generation in the spring develop long wings, and this form predomimates until late summer, when the proportion declines, and in October only a small number of winged adults can be found. The females continue to deposit eggs and the young larve develop and may be taken from the grass upon warm fall days till snow covers the ground; hut so far as I can find, only the adults survive the winter. Hibermating females do not appear to suffer from exposure to a temperature of $-21^{\circ} \mathrm{F}$., and they may be brought in at any time during the winter he pulling a few handfuls of grass from infested fields and bringing it into a warm room, where the little animals will rery soon become lively and begin to crawl. Accidentally it was found that they could survise for several days though completely submerged in a weak solution of potassimm hydrate, and they have been found to revive after being frozen solid in a 2 per cent solution of the same: but so far as my experiments went, freezing in pure water killed them. The females become antive very early in the spring and the development of eggs begins. As many as eight apparently fully dereloped eggs have been seen at one time in the body of one of these hibernated females. Ovipo-
sition soon begins, and lasts for from four to six weeks in many cases. They seem to oviposit as readily at night as in daylight. The deposition of an egg requires about one and one-half minutes. The eggs may be readily scen in the leaf by holding it before a light, when they appear as small, lighter spots; they may be casily separated from the leaf by stripping off the epidermis. The length of the egg stage varies from ten to fifteen days for the first generation to from four to seven days during the heat of summer.

The longth of the larval stage varies from two weeks in carly spring to about four days in midsummer. The mature larve select secluded places in which to transform and are hard to find in the field, but it appears that they usually go down to the basal leaves near the root or into the sheaths higher up the stem. The pupal stage is longer for the long-winged females than for the short, in the former requiring four or five days in early spring, whereas the short-winged form requires only from two to three days at the same season. As the weather becomes warmer they transform more rapidly. The appearance of a number of winged adults early in May marks the maturity of the first generation, but as the length of the period of oriposition exceeds the length of time required for the early stages, there is no distinct line between the generations out of doors after this time. The length of the life cycle is from about twelse to thirty days.

Common name.-Since Professor Comstock's first mention of the injury done by this species of Thrips to June grass and timothy, sereral economic entomologists have referred to the most conspicuous effects of its work, the dead tops of these grasses, as "Silver top" or "White top." Many have questioned the agency of Thrips in producing this injury and have ascribed it to some other suctorial insect, but the majority of writers are now inclined to credit Thrips with a large part, if not all, of this damage. As they had no means of identifying the little pest, they have usually referred to it as the "Grass Thrips." This name has been very generally used for this species and for no other, so far as we can learn. It therefore appears to be the generally accepted common name.

Economic notes.-Extensive injuries to grass have been reported from the New England States, New York, southern Canada, Ohio, northern Illinois, and Iowa. Without doubt the insect causing this damage infests a larger territory than this, for it is so small that it easily escapes observation, and the damage done by it is often attributed to other agencics. In southern Maine, Professor Fernald reported (253) that by haying time one-fourth of the June grass (I'oa pratensis) in the fields was dead and worthless. In 1857 it produced great injury around Emmet, Ohio, where 30 per cent of the grass was killed (27-2). In 1888 and 1889 widespread injury was reported from New York (291) and Ontario (322), where it appeared to work most
mpon lawns and meadows. In Massachusetts, especially in dry seasoms. its injuries are severe, it having been stated by Prof. W. P. Brooks that this tiny foe does more damage to grasses here than any other single insect.

Genus APTINOTHRIPS Haliday.

Body slender, almost naked. Head longer than wide, extending formarl in ablunt projection between the eyes. Eyes small; ocelli wanting. Antennae eight segmented (six segmented in A. rufus var. comatticormis). Maxillary palpi three segmented. Prothorax shorter than the head and somewhat broadened posteriorly, without longs spines at angles. Logs short; femora plainly thickened; tibia very slender at the hase, the remainder unusually broad; tarsi equally broad. Wings entirely absent. Hairs at end of abdomen short and very slender.

Males with two spines in middle of ninth segment above.
Species of this genus move slowly and have no power of springing.
I have found only the species mufus and its variety, connatticornis, belonging to this genus.

APTINOTHRIPS RUFUS (Gmelin).

Plate V, figs. 52-54.

"Der rothe Blasenfuss" v. Gleichex, das Neueste aus dem Reiche d. Pflanzen, 1764, pl. xvi, figs. 6 and 7.
Thrips rufa Gmelin, Caroli a Linné Systema Nat., 1788, p. 2224.
Thrips rufa Nicholson, Journ. Nat. Phil., 179-, pl. vin, fig. 1.
Thrips (Aptinothrips) rufa Haliday, Entom. Mag., 1836, p. 445.
Thrips (Aptinothrips) rufa Haliday-Walker, Homopt. Ins. of Brit. Mus., 1852, p. 1103, pl. v, figs. 5-11.

Aptinothrips rufa Lindeman, Bull. Soc. Imp. d. Natur. d. Moscow, 1886, pp. 319-320, fig. 11
Aptinothrips stylifera Trybom, Entom. Tidskrift, Årg. 15, Häit. 1-2, 1894, pp. 41-ins.
Aptinothripis ruj́a Uzel, Mon. der Ord. Thysanoptera, 1895, pp. 152-154, pl. II, fig. 17; 13. v1, figs 78, 79.
Aptinothrips rufa Teybosi, Ofv. Ak. Forh., 1896, p. 613.
Aptinothrips rufa Reuter, Über die Weissithrigkeit der Wiesengräser in Finland, 1900. Scattered references, especially pp. 92-120.

Aptinothrips rufa Tümpel, Die Geradflügler Mitteleuropas, 1901, p. 290.
Female-Length $1.2 \pm \mathrm{mm}$. (1.06 to 1.30 mm .) ; width of mesothorax about 0.18 mm . (0.16 to 0.20 mm .). General color, entire body and leg's clear, pale yellow; outer part of antennx, month parts, and tip of abdomen shaded with brown. Body slender and smoothly fusiform.

Head considerably longer than broad, rounded in front; cheeks straight and parallel. Eyes small, black, oval, composed of few facets, situated at anterior angles, protruding very slightly; ocelli always absent. Mouth cone moderately long, not sharply pointed, tipped with brown-black; maxillary palpi three segmented. Antennæ
only one and threeserenthe times an long as the head, approximate at base. composed in the trpical form of eight regments of following relative lengths:

$$
\begin{array}{cccccccc}
\frac{1}{2} & 2 & 3 & \frac{1}{c} & 5 & 6 & 7 & 8 \\
\hline .5 & 7.7 & 7.5 & 16.1 & 6.1 & 11 & 3 & 3.3
\end{array}
$$

Segment one is broadly romded: two has an musually constricted basal stalk, though it is hroader than that of three: three to five bear earh one quite slender sense rone on onter angle, and six has one on imer side beyond the middle; spines and sense cones mpon all segments pale and inconspicuons. Antemme concolorons with head at hase, but shading outwardly gradually to brown-hack at tip.

Prothorax slightly shorter than head and a little broader than long: smooth and without spines. Pterothorax a little hroader than prothorax, withont spines or traces of wings. Legs short and thick. all nearly equal in length, concolorons with hody; tarsi tipped with brown within.

Abdomen unnsually long and slender, nearly three and one-half times as long as its greatest diameter, about twice as wide as head, nearly cylindrical to eighth segment, then tapering to a point at tip. No spines upon abdomen except around segments nine and ten; these are quite short and slender and stand ont nearly perpendienlarly to the surface upon which they are borme. Extreme tip of ten shaded very dark brown.

Redescribed from three specimens.
Males unknown to me. According to Hatiday, they are elear yellow, and the saffron-yeflow spermaries show through the abdominal walls. The ninth abdominal segment hears two spines in the middle ahove, not far from the hind edge.

Ver': commutticomis Tzel.-This rariety agrees very closely with the typical form except that the antemme have only six segment; the relative lengths of segments are as follows:

$$
\begin{array}{cccccc}
1 & \frac{2}{7} & 3 & 4 & \frac{5}{7} & 6 \\
5 & 6.5 & \frac{6}{5} & 16.3
\end{array}
$$

The sixth, serenth, and eighth segments are grown together into one compact sixtls segment of an elongated conical form. The abdomen may he a little shorter in proportion and broader.

No males have been taken.
This species appears to be surely Apt. mifus Gmelin, but it is larger and differs in some other respects.

Fored plents. - Varions grasses and in turf.
Mubitut.-England (Haliday), Russia (Lindeman), Sweden (Trybom), Bohemia, Germany, Helgoland (Uzel), Finland (Renter), United States: Amherst, Massachusetts.

Life history mknown.

Genus HELIOTHRIPS Haliday.

Body. copecially the head and prothorax, with a deeply recticulated structure. Head broader than long, unesen, somewhat broadened behind, and with a sharp hump between the eyes in front. Cheeks not arched, contracted into saddle-shape in the middle. Eyes prominent but not protruding. Ocelli present. Antenna eight segmented: seroud segment of style very much longer than the first and provided with a short, sender hair at the tip. Maxillary palpi sometimes two. sometimes threr segmented. Prothorax shorter than the head, without long spines at angles. Leg's mammed. Wings present, not reticulated. Fore wing broad at base, with two longitudinal veins, though the fore vein runs very near to and sometimes fuses with the (rosta: veins set with slender spines; fore fringe, in some species, very weak and sparse, and when this is the case the costal spines are very strongly developed. Anal spines weak and light.

The chameters of this genus have been extended to include these speries

> SYMORSIS OF SPECIES.

HELIOTHRIPS HAEMORRHOIDALIS (Bouché).

Thrips hnemorrhoidulis Boucıé, Schädl. Garten-Insecten, 1833, p. 42.
Heliothrips alomidum Halid.sy, Entom. Mag., III, 1836, p. 443.
Heluothrips huemorrhoidulis Buraerster, Handb. d. Entomologie, II, 1838, p. 412.
Heliothrips haemorrhoidulis Buryeister, Genera Insectorum, colored illustration, 1838.

Heliothrips haemorrhoidalis Amyot and Serville, Ins. Hemipt., 1843, p. 641.
Iteliothrips huemorrhoidalis Haliday, Walker, Homopt. Ins. Brit. Mus., 1852, p. 1002, pl. vi, fig. 13.
Ifeliothrips hucmorrhoidulis Heeger, Fünfte Fortsetzung. Sitzungslo. Kais. akad. Wiss., Wien, LX, 1852, 1. 473, pl. xvir; separate, Wien, Gerold, 1852, VIII, 1p. :3-4.
Thrips hamorrhoidulis Bremi, Stett. Ent. Zeit., 1855, pp. 313-315. Reprinterl from AbhandI. d. Zurich Gartenban-Gesell., III, pp. 260-261.
Heliothips huemorhoilulis Löw, Verhandl. d. k. k. zool.-bot. Gesellsch., Wien, XV'11, 1867, p. 747.
Heliothriys haemorrhoilutis Borsdeval, Ent. Hortic., 1867, pp. 233-235, fig. 32. Helinthrips huemorthoidulis Packard, 17th Ann. Rept. Mass. Bd. Agr., 1870, p. ${ }^{2} 63$, , 1. . 1, fig. 2; Injurious Ins. new and little known, p. 31
Thrips udonidum Cook, 3d Amm. Rept. Pom. Soc. Mich., 1873-74, 1874, p. 501.
Heliolhrips hamorthoidulis l'Ackard, Half Hours with Ins., 1881, pp. 118-119, fig. 86.

Heliothrigs haemorrhoidalis Pergande, Pryche, III, 188*, 1. 381.
Heliohnipes Lefevre, Ent., NV', 1882, 1. 240.
Thrijs huemorrhoidulis Frač, Přirodopis zivočiěstra, 1882, p. 113.
Meliothrips huemorrhoidulis Lintner, 2d Rept. Ins. N. Y., 1885, pp. 29, 31, 38, 56.
Heliothrips Lutemurhoidalis ——, Bull. Soc. Ent. Belgique, NXIX, 1885, 1• LXx.
Ifeliothrips udomidum Cameron, Trans. Nat. Hist. Soc. (flasgow (new ser.), I, 1886, 1. 301.
Heliothrips haemorhoidentis Targioni-Tozzetti, Cronaca entomologica dell amo, 1887, (1888), 1. 5 (7).
Heliothrips haemorrhoidalis Jordan, Zeit. f. Wissens. Zool., XLVII, 1888, pp. int1$620, \mathrm{pls}$. xxyyi-xxxyif.
Ifeliothips humorrhoidulis Reuter, Meddal. af. Soc. Fauna Flora Femn., XVII, 1891, 11. 164-165.
Heliothrips huemorrhoidalis Tzel, Mon. d. Ord. Thysanopt., 1895, pp. 168-170, pl. vi, fige. 90-92.
Thrips (Heliothrips) huemorrhoidulis Frane, Die tierparasitiren Krankheiten der Pflanzen, 1896, 1. 134.
Ifliothrips huemorrhoidulis Buffs, Riv. Patol. Veget., VII, No. 1-1, भ川. 9t-108; continued, VII, Nos. 5-8, 1898, pp. 129-135, 136-142.
Ifeliothrips huemorhoidalis Tümpel, Die Geradflügler Mitteleuropas, 1901, p. 2:0.
Finule.-Length 1.23 mm . (1.12 to 1.39 mm .); width of mesothorax 0.30 mm . (0.25 to 0.35 mm .). Color of head and thorax dark brown; abdomen yellowish brown, fading at tip to brownish yellow. Entire body and legs showing reticulating chitinous thickenings, which are heariest upon the head, thorax, and anterior sides of abdomen. Head one-fourth wider than long, outline rery irregular and rough; cheeks slightly concaved, narrowed ahruptly near posterior edge into a short neek; anterior margin strongly arcuate; dorsal surface of head bears a few small spines, the bases of which appear like small air bubbles in the angles of reticulations; frons reticulated. Eyes protruding considerably, strongly pustulated; three ocelli situated on sides of an elevation between the eyes, separated considerably from margins of eyes, pale yellowish, very faintly or not at all margined inwardly by crescentic pigmentation. Mouth cone short, blunt, not reticulated; maxillary palpi three segmented, second segment longest; labial palpi short. Antemax twice as long as head; relative lengths of segments as follows:

$$
\begin{array}{cccccccc}
\frac{1}{5} & \frac{2}{10.3} & \frac{3}{17.7} & \frac{4}{13} & \frac{5}{11} & \frac{6}{9.7} & \frac{7}{4} & \frac{8}{15.5}
\end{array}
$$

Second segment thickest, others very slender, especially peduncle and busal half of three; seventis nearly cylindrical, narrow, no thicker than bases of four and five; eight is very slender, tapering slightly. and bearing a single very slender bristle at its tip. Color of one and two light brownish yellow; three, four, and five clear pale yellowish; six abruptly brown, yellowish in basal third; seven and eight gray. Spines upon antenal segments pale and inconspicuons, three especially long ones being situated one each upon the outer angles of three and
fonl and the imer angle of six: segments three to five faintly ammulated.

Prothorax transerse. only about three-fourths as long as head, but nearly twion as wide as long, rounded at the angles; sides slightly eoncared. beaning a few small spines, of which only the bright bases are usually visible; reticulation heary, but intermpted across the middle. Mesethorax one and one-fourth times as wide as the prothorax; reticulation upon mesomotum ruite heary, regular upon anterior hatf, upon posterior half elongated toward a deep incision in the hind margin of the plate, the longitudinal thickening becoming weaker. Motanotmon pominent, triangular. strongly reticulated. Wings very slonder, mot nearly reaching to tip of abdomen, broadened abruptly at hase to more than twice theil diameter at middle: only one distinct longitudinal vein, and this sends off a short obligue branch to costal rein. Anterior fringe very short and parse; posterior quite long and heary: no prominent spines upon reins. Legs rather short and thick; pale yellowish, except coxe hrownish; first and second pairs about equally long: hind pair a little longer; all leges reticulated.

Ahdomen elongate-orate, pointed at tip: dorsum reticulated: segments two to eight with irregular trimsverse brown line near front edge of each. Spines upon abdomen mostly small and indistinet; most prominent ones situated upon middle of dorsum of segments two to eight. close to median line; these gradually increase in size posteriorly: anal spines short and weak. Color of abdomen varies from brownish yellow to dark brown; last two segments usually mueh lighter but less variable in color than rest of ahdomen, being regularly brownish yellow tipped with dark brown.
liedescribed from eight females.
Male unknown.
In Germany this mperies is called "Black Fly."
Formel plunt..--ispidimm, azaleas. Crotom, dahlias, ferms, Liliaceæ, I'eller lerstritu. I'llor, pinks, verbenas, vines, ete.

Habitat.-Emgland (W̌alker, ('mmeron), Germany (Bonché, Burmeister, Bremi, Jordan, Bohls), Viema (Heeger, Löw), Finland (Renter), U'nited States: Distriet of Columbia, Iowa, Massachusetts, Mirhigan.

Life history unknown.
In his original deseription Bonché states that he believes the native land of this species is America. In both countries, however, it has been fonnd almost entirely confined to greenhouses and feeding upon greenhouse plants.

It has been very injurious in some places. Packard calls it "one of our greatest pests in hothonses," and Cook records it as "one of the wor's pests around Detroit, at Adrian, and in the southern counties" of Michigan.

HELIOTHRIPS FASCIAPENNIS, new species.

Plate VI, figs. 58-61.
Femrele.-Length 0.92 mm , (0.90 to 0.94 mm .) : width of mesothorax 0.22 mm . (0.22 anc! 0.23 mm .). (ieneral color yellowish brown or dark hrown. Head, thorax, and legs distinctly but not deeply reticulated.

Head about one and one-third times as wide as long; form rather rectangular; front margin depressed at insertion of antemar; cheeks nearly straight. Eyes dark, quite large, prominent but hardly protruding, margins lighter; ocelli present, approximate, pale yellow with dark crescentic margins, well removed from eyes. Maxillary palpi small, two segmented. Antemme eight segmented, twice as long as head: relative length: of segment::

$$
\begin{array}{cccccccc}
\frac{1}{4} & \frac{2}{5} & \frac{3}{11} & \frac{4}{10} & \frac{5}{9} & \frac{6}{5.5} & \frac{7}{3.5} & \frac{8}{8}
\end{array}
$$

Segment one much narrower than two and almost spherical; two is thickest segment and but little longer than thick; three and four fusiform; five clavate; six and seven together of same form as five only inverted; eight very slender and terminated by an equally long hair. Segments one and two, outer half of five, six, seven, and eight hrown; three, four, and hasal half of five pale yellow. Spines on three, four, and five long, dark, and prominent; color around bases of those on three and four brownish.

Prothorax as long as head and less than twice as wide as long: sides rounded slightly and diverging somewhat posteriorly; without prominent spines at angles; concolorous with head and reticulation of about same depth. Mesothorax somewhat wider than prothorax; anterior edge about straight and angles nearly right angular; membrane yellow; plates brown. Wings long, overreaching the abdomen; fore wing quite slender beyoud basal fourth at which point the hind longitudinal vein branches from the fore rein; width in middle abont one-fifteenth its length; hoth reins run close to edges of the wing, the fore one becoming fused with the costa while the hind one remains distinet. Internal veins set with few short spines; costa set with stout spines but without fringe except for slight vestiges along the middle; hind fringe long, dark, and wayy. Wing dark brown crossed with three bands of white as follows: At one-fifth, three-fifths, and four-fifths its length; outer part of scale also white; the brown area at the tip is confined to edge on border around last fifth, the middle here being grayish and in continuation of the last white band. Legs fairly stout but not thickened, weakly reticulated; femora yellowish brown to dark brown; front pair lightest and yellow at tips; fore tibie yellow shaded with brown around middle; the other tibia brown, yellow at
tips: all tarsi pale yellow with brown shading at hases of bladders; spines wrak and light colored; hind coxa large, approximate, and about twiow ats long an wide.

Abdomen elongated oroid, abont twice as long as wide; width of seyment, gradually increasing up to the fourth, then decreasing gradnally to tip; greatest width equal to about twice that of head; dark line acrost segments one to eight irregular, conspicuous only on the lighter specimen; that on segment one curving forward greatly in middle. Surface of abdomen very faintly reticulated, but this is not visible on darker specimen; spines on last two segments short and fine: color yellowish brown to dark brown, lightest along middle.

Described from two femalles.
Cutype.-Cat. No. 6330, U.S.N.M
Male unknown.
Foorl plants.-Taken on grass.
Incbitut.-Amherst, Massachnsetts.

HELIOTHRIPS FEMORALIS Reuter.

Plate ${ }^{\mathrm{V}}$, figs. 55, 56; Plate VI, fig. 57.
Heliothrips femoralis Reuter, Meddel. af. Societas pro Fauna et Flora Fennica, XVII, 1891, p. 166.
Ifliothrips cestri Pergande, Ins. Life, VII, No. 5, 1895, pp. 390-391.
Ifeliothrips femoralis Uzel, Mon. d. ord. Thysanoptera, 1895, p. 170.
Heliothrips femoralis Bergroth, Ann. Soc. Ent. Belgique, XL, 1896, Pt. 2, p. 67.
Fromale.-Length 1.3 mm . (1.12 to 1.5 mm .); width of mesothorax about one-fourth the body length. General color dark brown to yellowish brown, lighter at extremities. Entire surface of body weakly but plainly reticulated.

Head two-thirds as long as broad, widest in front; anterior margin depressed at insertion of antenne; vertex carinated; bases of antemnæ separated by a prominence as high and nearly as wide as the first antemal segment; two transverse wrinkles near back of head more prominent than the others; behind the anterior one of these two the longitudinal parts of the reticulations become very faint; spines upon head seattering and small. Eyes quite large, protruding anteriorly, cour'sely gramulated; eyes and margins of ocelli bright, dark red by reflected light; ocelli placed on sides and front of a distinct elevation on top of head between eyes. Head light brown with light yellowish longitudinal stripe on each side between eye and ocelli. Maxillary palpi three segmented, short, small; labial palpi minnte. Antemne eight segmented, slender, nearly three times as long as head; relative lengths of segments as follows:

$$
\begin{array}{cccccccc}
1 & \frac{2}{8.6} & \frac{3}{16.6} & \frac{4}{12.2} & \frac{5}{11} & 6 & \frac{7}{8.6} & \frac{8}{4.3} \\
\hline . & 10.5
\end{array}
$$

Segment one cylindrical, three-fourths as broad as two, which is
barrel-shaped and ammulated; remaining segments narrower than these two and more clongated; three and four fusiform; seven and eight nearly cylindrical; eight very slender; one, two, and three nearly concolorons, light yellow with tinge of gray or brown on one and two; four and tive light yellow in basal half, shading to light brown on apical half: six, seven, and eight miformly chocolate brown; segments two to tive ammatated: spines slender, light colored.

Prothorax transerse, abont one-fifth wider than the head, twier as wide as long and shorter than the head: sides rounded; without conspicuonsly large spines. Mesothorax about one and two-thirds times as wide as the head; anterior angles prominent; mesonotum with deep incision on posterior margin; metanotum with four spines standing in a square near its center. Wings present, long, about one sixteenth as broad as long; fore wings broadened at base, with two longitudinal veins, the second hranching from the first not far from the base of the wing. Spines upon veins of fore wing stout, dark colored, and set at uniform distances; costa bears seventeen to twenty, fore rein fourteen to seventeen, hind vein ten to thirteen, seale three to five besides pair at its tip; spines on basal fourth of wing are light colored, smaller and much less conspicnons; anterior fringe on both wings fairly long and stout; posterior fringe long, slender, and dark colored. Wings grayish brown to dark gray, lighter between the longitudinal veins: three nearly white cross bands; one across base before branching of veins, another at three-fourths the length of wing and the third across the tip. Legs: All tibie, tarsi, and fore femora yellow; middle and hind femora dark brown, yellow only at ends; spines upon legs small and inconspicuous except ten to twelve on imer side of hind tibia.

Abdomen broadly ovoid, conical at tip, twice as wide as head; oripositor long and slender; tenth segment split open above: segments two to eight with dark cross line near anterior edge. Two or three spines on sides of each segment from two to eight, not conspichons; anal spines weak. Color of abdomen yellowish brown to dark hrown; last two segments much more yellow, but shading to brown at posterior edges.

This species has the power of springing.
No males found.
Frod plants.-Amaritlis sp., Aralia, Arum, Cestrum nocturnum. Chrysanthemm, Crimum, cucumber, Dracuenu spp., Euchurix groudi-
 Mina Tobuta, moonflower. Pandamus. Phoenix, Pichardiue uetlioprion. tomato, Vitis.

Mebitat.-Helsingfors, Finland (Renter), United States: District of Columbia; Amherst, Massachusetts.

Life history unknown.

HELIOTHRIPS FASCIATUS Pergande.

Itchuthrips fuscinta Pekiande, Ins. Life, VII, No. 5, 1895, 11. 391-392.
Fromell: - langth 1 mm. width of mesothorax $10.2!9$ mmm. Body faintly reticulated. General color dark hrown.

Ilead about 1 wo-thirds as long as wide; cheeks straight; anterior margin depressed at insertion of antenne; color miform! hrown. Eyes small, black, not protruding; ocelli pale yellowish margined with reddish. Mouth cone moderately long; maxillary palpi slender, three segmented. Antemme two and one-half times as long as head, eight sugmented; bases separated by low elevation; relative lengths of regments:

$$
\begin{array}{cccccccc}
1 & 2 & 3 & \frac{4}{4} & 5 & 6 & 7 & 8 \\
4.5 & 9 & 13 & 11 & 9.25 & 6.5 & 3.5 & 7.5
\end{array}
$$

Sewment one rounded, wider than long; two is broadest, constricted abruptly at base, hroad at outer end; three and four are of similar shape: modioliform (miformly constricted at each end with median enlargement regular); outer end of five is quite broadly cut off; six is abruptly constricted at base, outer half tapering gradually; seven neally cylindrical: eight tapers gradually and bears one rery long, slender hair at tip, nearly as long as segment itself. One and two uniformly hrown, concolorons with head; three and four with light hrownish ring around middle of enlargements; remainder pale yellowish, as is also basal half of five; rest of antenna brown; spines around middle of segments three and four and near end of five are long, dark, and comepicuous.

Prothorax fully twice as wide as long, slightly wider at posterior edge than at anterior, withont conspicuous spines, colored like head. Mesothorax widest at posterior edge; sides curving gradually inward to anterior edge. Netathorax as wide at front edge as mesothorax is at hind edge, and its sides curve gradually to base of abdomen, so pterothorax appears smoothly rounded. Wings present, extending to tip of abdomen. slender except where broadened at base; two longitudinal reins, the second branching from the first near the broadened hase; the fore vein then inclines toward the costal and runs contignons with it to tip of wing; the hind vein runs clove to hind edge, but is distince. Costal spines twenty in number, very large and stont, much longer than the rery weak fringe; fore rein bears four stout spines at hasal third and two not far from tip; hind vein bears five moderately long spines; posterior fringes dark, heary, and wary. Wings grayish brown, darkest over reins; fore wings at base and a rather broad band at three-fourth their length tramsparently white, darkest brown around the outer shaded portion. Legs of medium length; femora and tibixe dark brown except aromed outer ends of femora, and both
extremities of tihic pale yellowish; tarsi also yellowish, brownish around tips; legs bearing quite a number of inconspictons spines; hind tibie alone bearing stout spines at their tips.

Abdomen hroadly ovate, pointed at tip, wider than thorax. C'olor dark brown, somewhat lighter on last two segments. Anal spines weak, especially on last two segments; the few spines on sides of segments two to eight are inconspicuons.

Redescribed from one specimen at U. S. Department of Agriculture, Divivion of Entomology.

Male not known.
Food plants.- Orange leaf infested with dspidiotusamrantii. (Prob)ably not feeding on scale.)

Inditut.-Y Yuba County, California.
Life history unknown.

Genus PARTHENOTHRIPS Uzel.

The body, principally the head and prothorax, with deeply reticulated structure. Head broader than long, with a hump in front hetween the eyes; cheeks swollen, constricted into a short neek at hind edge. Eyes protruding; ocelli present. Antema seven segmented, rery slender except the fist two segments; style one segmented, hair-like, as long as the sixth segment and bearing a slender hair of equal length at the tip. L pon the third to the sixth segments, separated from eath other, there are always two sense cones. Maxillary palpi two seg. mented, the second segment being distinctly longer than the first. Prothorax plainly shorter than the head, uneren, hroadened posteriorly, with one long spine upon each hind angle. Legs marmed. Wings rery broad and long, so that they reach beyond the end of the abdomen. The fore wings have the form of a "cake-knife;" their surface is reticulated and there appears to be only one longitudinal rein and a rery strongly developed ring vein. The vein arising from the base of the wing bends forward at the first fourth of the length of the wing and unites with the musually strong ring vein from that point, while the hind vein, branching fron the main vein at this point, bends toward the hind edge of the wing and runs parallel to it, but remains distinct. The fore fringe has disappeared and its place is taken by the stout costal spines. The hind rein is set with stont spines at regular intervals. Beyond the first fourth the wing is somewhat narrower than at the hasal fourth. The front edge is nearly straight and the hind edge bending forward unites with it to form a sharp point. The last two abdominal segments are distinctly narrowed in the females. The spines at the end of the abdomen are weak and light. The species belonging here have the power of springing.
I have found only the species dructenx of this gems.

PARTHENOTHRIPS DRAC $\nsubseteq N$ (Heeger).

Plate VI, figs. 62-65.
Inctiothrips dracana Heecer, Sitzungsh. d. math.-naturw. Classed. kais. Akad. d. Wisensch., Wien, NIV', December, 1854., p. 365. Separata. Beitrage zur Naturgeschichte d. Insecten Osterreichs, pp. 3-7.
Thrips dructar lieliel, Bull. phys-mathem. Acarl. Sciences, St. Petershurg,

Hothothís drucame r. Fradexfeld, Verhandl. d. k. k. zool.-bot. Gesellselı., XVI, Zool. Miscellen, XIlI, 1867, pp. 793-801.

Purthenothrips Iracenar Jordax, Zeit. f. Wiss. Zool., XLVII, 1888, ip. 541-620 (Biological part).
Purthemollipips drurame Reuter, Meddel af. Soc. Fauna et Flora Femnica, XVII, 1891, 1. 166.
Helinthrip,s dractrat Trybom, Entom. Tidskritt, 15 Åg., Häft 1-2, 1893, pp. : $\mathrm{H}-58$.
Pathenuthrips drucana Uzel, Mon. d. Ord. Thysanopt., 1895, pp. 171-173, pl. if, figs. 12-14; pl. vi, fig. 93.
I'urthenuthips Iracizne Tünpel, Die Geradflügler Mitteleuropas, 1901, p. 291.
Frmals.-Length about 1.15 mm .; width of mesothorax abont (). $2 \times$ ²m. General color dusky yellow, more or less strongly shaded with brown, especially upon the abdomen. Head, thorax, and wings corered with more or less clearly defined reticulating ridges.

Head widest in front through the eres, four-fifths as wide as length; general shape quadrangular athove, though front margin is somewhat elerated in middle; heavily reticulated; cheeks straight, but abruptly constricted at lind edge, neck-like; color quite uniform brownish yellow. Eyes black, rery strongly protruding at fore angles; a slight depression surrounds cach eye; ocelli small, approximate, with dark red margins contignons, situated upon a slight elevation between the eyes and well removed from them. Maxillary palpi two segmenterl, the second segment being longer and more slender than the first. Antenne seven segmented, rery slender beyond second segment, ahout two and one-half times as long as the head; relative lengths of segments:

$$
\begin{array}{ccccccc}
1 & \frac{2}{5} & \frac{3}{5} & \frac{t}{2} & 5 & 6 & 7 \\
20.5 & 17 & 16.5 & 14.3 & 13.5
\end{array}
$$

Scgment one nearly spherical, fully as long as hroad, narrower than two. which is thickest; three to six subequal in thickness and about one-half the diameter of two, faintly ringed: seven very slender and hearing at its tip a still more slender spine, which may be nearly as long as the segment. Segments one and two slightly more dusky yellow than three to five: five is shaded with brown at its tip: six and seven brown or gray-brown.

Prothorax transerse. fully twiee as wide as long and about twothirds as long as the head, wider behind than in front; sides somewhat
rounded: surface reticulated like head and concolorons with it: one stout spine at each hind angle. Pterothorax on dorsal line only twothirds as long as wide. one and one-fourth times as wide as prothoma: metathorax nearly as wide as mesothorax; color of pterothorax somewhat more yellow than hearl and prothorax; mesonotal plate derply incised in middle behind; reticulations converging to anterior ond of this incision. Wings very long and about one-tenth as hroad. operreaching the abdomen considerably: form and remation mique: fore wings somewhat longer and about one and one-half times as broad at the hind wings: their front edge runs straight rlear to the tip; the hind edge runs nearly parallel to it till near the end, where it curres forward to join the fore edge at the tip; the entire wing is bounded by one rery heary ring rein. There appears to be only one longitudinal rein; this at about basal fourth of wing enrves forward to the costal vein, which it joins; ${ }^{a}$ then it curves bac!ward and ims parallel with and quite close to the hind edge till it joins the ring rein before the tip. The eosta bears no fringe. but is set with mumerons stont spines as is also the longitudinal rein; hind edge bears a double fringe of long hairs: surface of fore wing shows faint reticulation. There are three rather faint brown spots on fore edge, the darkest heing where the fore rein joins the costa, and one longer spot on hind elge; spines standing in these spots are much darker than the others. Legis concolorons with body. finely reticulated; hind coxie approximate; fore femora brownish yellow, the others brown, yellowish at extremities; tibix and tarsi concolorous with second segment of antenne: tarsi tipped with dark brown; spines very weak and light colored.

Abdomen distinctly wider than thorax and broadly joined to it; abont twice as long as broad, ovoid, pointed at tip: general color brown or yellowish brown; last three segment yellow; sometimes the sides of each segment are much more yellow than its brown central area; anterior edge of segment one is curved forward rery abruptly in the middle forming a romnded apex to the dorsal plate; prominent dark stripe on anterior edges of three to seren; anal spines weak and light.

Redeseribed from fire females taken in Amberst, Massachusetts, on Fiontia and Ficus. I hare no male, but Heeger says:

Male- The abdomen in males is distinctly more slender than in females: is yellow-brown, thinly chitinized; abont twiee as long the the meso and metathorax together; almost cylindrical, with tapering amal extremity; maked, set with some long bristles only at the hinder edge of the last three abdominal segments.

Food plants.-Draczna, Ficus elastica, Tientin Tulmorima.

[^4]Proc. N. M. vol. xxri-02-12

Ilnlitut. Vienna (Heeger, v. Franenfeld), Finland (Renter), St. Petershurg (Regel), (iemmany (Jordan, Bohls), Bohemia (Uzel), United States: Washington, District of Columhia; Amberst, Massachusetts.

The early stages are described as follows:
Eyy. -The eggin are nearly membranous, greenish white, elongateovate. ${ }^{1} 5^{\prime \prime \prime}$ " long, half as hroad.

Larm-Larya are milky white, nearly eylindrical; only the last three abdominal segments taper gradually to a blunt point; they are
 slender lut noticeably longer than the breadth of the abdomen; month part, are thin, horny, yellowish, pointed, snout-like. Eyes are on the sides of the head, cirenlar, not vaised; relatively large and clear red. The antemne are thread-like, white with gray points, five segmented, somewhat longer than the head; first three segments small, cup-shaped, of equal size: fourth, spindle-shaped, about as long as first three together; fifth is gray, conical, very pointed, somewhat longer than the fourth.

The thorax is somewhat longer than the antemne, swollen, that beneath; prothorax is rounded-triangular, somewhat shorter than the pterothorax, the segments of which are grown together, and are elongated-rectungular and romded. The legs are close together, with very large eoxa; nearly as long as the antenne; middle pair noticeably shortest, hind pair longest; femoza shorter and thicker than tibie, which are cylindrical; tarsi rery short. indistinctly two segmented.

Abdomen spindic-shaped, nearly as broad and somewhat more than twie as long as the entire thorax: the nine segments are hardly perceptibly marked, equaliy long and set at sides with single. knobbed hairs.

Nrympher fmpm. -The nymphs in the last days before their transformation are whitish, fusiform; their cyes are raised, round, and red: antemax indistinetly eight segmented, laid back over the head near one another: wing sheaths lying at the sides of the abdomen, slender, bottle-shaped, reaching to the fore edge of the sixth segment and set with many transparent, white hairs, as is also the spindleshaped ahdomen; the hind edge of the next to the last and the end of the last segment set with single, knobbed hairs.

Genus THRIPS Linnæus.

Ocelli present. Antennae seren segmented (style one segmented). Maxillary palpi three segmented. Prothorax regularly somewhat longer than the head; two long spines always present upon its posterior angles. Fore legs usually unarmed. Wiags usially present, moderately hroad, with fore fringe developed and reins set with short -pines.

The species belonging here hawe the power of springing.

Although this is the largest genus of the order, I have here found but two species which I can place in it. These two may be easily distinguished by their colors.

Head brown, thorax reddish brown, aldomen yellow or gray-hrown -perplemes (p. 184). Color uniformly light yellowish varying to brownish yellow
tabaci (1).179).

THRIPS TABACI Lindeman.

ONION THRILS.

Plate VII, figs. 69-71.

? Limothrips tritici Packard, 2d Ann. Rept. Ins. of Mass., 1872, pp, 5-8, 2 figs.; 19th Ann. Rept. Secy. Mass. Bd. Agr. for 1871, Pp. 333-336, 2 figs.; reprinted in 9th Ann. Rept. V. S. Geol. Geog. Surv. Territories for 1875, p1. 742-744, 1). Lxyif, figs. 3-5.

Thrips on onion plants, Smpley, Bull. 10, Miscell. Information Roy. Gardens, 1887, p. 18.
Thrips tabuci Lindeman, Die schädlichsten Insekten des Tabak in Bessarabien, 1888, p. 15, 61-75.
Thrips sp. Tnaxter, Ann. Rept. Conn. Exp. Sta. for 1889, 1889, p. 180.
Thrips sp. Riley-IIoward, Insect Life, III, 1891, p. 301.
Thrips tabaci Ritzena Bos, Tierische Schädlinge und Nïtzlinge, 1891, pl. 5it, 578.

Thrips tabari Targhoxi-Tozzetti, Animali ed Insetti del Toharon in Erbal del Tobaceo Secco, 1891, pp. 222-224.
Thrips sp. Listner, Count. Gent., LV1I, Oet. 27, 1892, p. 809; Ahstract in 9th Rept. Ins. N. Y., p. 4. $\%$.
Limothrís sp. Baкer, Amer. Florist, VII, 1892, p. 168, fig.
Thips striata? Gillette, Ann. Rept. Col. Exp. Sta. for 1892, 1892, p. 36.
Thrips on onions, Webster, Ins. Life, V, 1892, p. 127.
Thrips striatus Gillette, Bull. 24, Col. Exp. Sta., 1893, pp. 13-15, figs. 11, 12.
Thrips strintus Riley-Howard, Ins. Life, VI, 1893, pp. 4-5, 343.
Thrips striutus? Gillette, 5th Amn. Rept. Col. Agr. Exp. Sta. for 1892, 1893, p. 36; 6th Ann. Rept. Col. Agr. Exp. Sta. for 1893, 1. 55.

Onion Thrips, Suth, Amn. Rept. N. J. Agr. Col. Exp. Sta. for 1893, 1894, p. 41.
Limothrips tritici Webster, Ins. Life, VII, 1894, p. 206.
Thrips allii Smbine and Lowe, Bull. 83, N. S., N. Y. Agr. Exp. Sta., 1894, pp. 680-683, pl. 11.
Thrips allii Webster, Ohio Farmer, Aug. 2, 1894, p. 97; Aug. 23, 1894, p. 157; Nov. 7, 1894, p. 373.
Thrips allii Sirrive and Lowe, 13th Ann. Rept. N. Y. Exp. Sta. for 1894, 1895, pp. $758-760, \mathrm{pl}$.
Thrips allii Osborx-Mally, Bull. 27, Iowa Agr. Exp. Sta.,1895, pp. 139-142.
Thrips tabaci Pergande, Ins. Life, V II, 1895, pp. 392-395.
Limothrips tritici Webster, Bull. 58, Ohio Agr. Exp. Sta., 1895, pp. xxxiiixxxiv, fig. 3; also in Ins. Life, VII, 1895, p. 206.
Thrips communis Uzel, Mon. d. Ord. Thysanoptera, 1895, pp. 176-179, pl. vi, fig. 100.
Thrips tabaci Uzel, Mon. d. Ord. Thysanoptera, 1895, p. 447.
Thrips tabaci Slingerlinı, Rural New Yorker, LV', 1896, p. 561.
Thrips tabuci Frank, Die tierparasitären Krankheiten der Pflanzen, 1896, p. 134.
? Thrips sp. near tabaci Davis, Special Bull. 2, Mich. Agr. Exp. Sta., 1896, p. 13.
? Thrips on cahhages, Smon, Economic Ent., 1896, p. 102.
? Thrips on (oucumber, Buittos, 20th Rept. Con'ı. Exp. Sta. for $1896,1897$.
Thrips tubuci Sibrinte, 15th Anm. Rept. N. Y. St. Exp. Sta. for 1896, 1897, Pp. 612-(61).
Onion Thrips, Sirmane, Bull. 115, N. Y. Exp. Sta., 1897, p. 70.
()nion Thrips, Sluvgerlanj), Rural New Yorker, May 8, 1897, p. 309.

Thrips tuburi LINtafer, 51st Ann. Rept. N. I. St. Mus. Nat. Hist., 18:1, p. 363; Separata, 13th Rept. Inj. Ins. N. Y., 1898, p. 33.
Thrips striutus Gillette, Bull. 47, Col. Exp. Sta., 1'i.8, p. 44.
Thrips tuburi (Quaintance, Bull. 46, Fla. Agr. Exp. Sta., 1898, pu. 103-114, fige. $10-12$.
Thrips tulaci llowskı, Yearbook, T. S. Dept. Agr. for 1898, 1899, pp. 142, 143, fig. 27.
Thrips tubaci l'eтtit, Bull. 175, Mich. Exp. Sta., 1899, Pp. 343-345, figs. 1, 2.
Thrips tebuci (quantance, Bull. 20, N. S., U.S. Dept. Agr., p. 59. Remenlies, various authors, 1899 , p. 60.
Thrips tubuci Webster-Mally, Bull. 20, N. S., U.S. Dept. Agr., 1899, pp. 67-70.
Thrips in Creemhouses, Fernali-IInns, Bull. 67, Mass. Exp. Sta., 1900, pp. 9-12.
Thrips communis Tümpel, Die Geranlflügler Mitteleuropas, 1901, p. 293.
Thrips tabaci (iarman, Bull. 91, Kentucky Exp. Sta., 1901, pp. 42-45.
Thrips tubuci Webster, Journ. Columbus Hort. Soc., XVI, 1901, No. 3,7 pp., 4 figs.
Thrips tulaci Hinus, Proc. 17th Ann. Conv. Are. Amer. Florists, 1901, Pp. 90-92.
Frimald.-Length about 1.1 mm . ; width about one-fourth the length. Color quite uniformly light yellowish varying to brownish yellow.

Head one-fifth wider than long; cheeks slightly arched behind the eyes; frons slightiy areuate between them; oeeiput indistinctly transversely striated; hairs upon the head few and minute; eyes not protruding, coarsely gramulated, very dark red by reflected light, black by transmitted light, sparsely pilose; ocelli suhapproximate, standing well back to the line of the hinder edge of the eyes but posterior ocelli not contignons with margins of eyes; color light yellow, margined inwardly with light brown crescents. Maxillary palpi three segmented; first and third segments equally long, second shorter. Antenne seven segmented; relative lengths of segments as follows:

1	2	3	t	5	6	7
4.4	8.7	11.1	10	8.6	10.6	$\frac{4}{t}$

Segment one short and globose; two barrel-shaped; three to five perlunculate, elongated oroid; five joined by moderately broad surface to hase of six which tapers somewhat from its middle to its apical end; seren tapering slightly, blunt at apex. Segment one lightest in color, clear light yellow; two, six, and seven uniformly light grayish brown: three light hrownish yellow; four and five colored like three at their bases but apices nearly as dark as six.

Prothorax as long as head, one-half wider than long; pronotum, indistinctly transversely striated and sparsely clothed with small spines; each hind angle hears a pair of very stout, conspicuous spines,
and between these pairs, along the hind edge of pronotum, stands a row of three smaller spines on each side. Metathorax one-third wider than prothorax: metanotal plate bears a few small spines. Wings about one-fourteenth as broad as long, slightly colored with light yellow; costal fringe of fore wings composed of short, stout bristles intermixed with a row of shorterspines. Fore longitudinal vein bears from ten to twelve spines arranged in three groups, as follows: Two groups upon the basal half of vein, the first of three or four spines, the second group of three, and beyond the middle of the wing four to six spines sattered at consilerable distances along the vein to its tip: when only four are present in last group they stand at nearly cqual distances apart; hind rein bears from fourteen to serenteen spines. Occasionally one or two cross reins may be seen between the fore rein and the costal at about one and two-thirds its length, but usually they are not present: hind vein arises from fore vein at ahout the middle of second group of spines. Hairs composing posterior fringes on both wings are long, slender, wary, and light colored. Legs concolorons with body or somewhat lighter, quite long and slender; second segments of tarsi much longer than first; spines on inner side of hind tibiar weak, except the pair at its extremity; legs sparcely clothed with tine hairs.

Abdomen as wide, or slightly wider, than the mesothorax, ahout twice as long as wide; each dorsal plate of segments two to eight marked near its anterior edge with a narrow, transverse line of dark chestnut-hrown color, widest at its middle and tapering gradually toward the sides, disappearing at the upper edge of the groups of three to five short spines which stand upon these segments just above the pleural plates. Posterior edge of ninth segment beats a circlet of eight long, stout spines, most prominent dorsally; terminal segment bears six spines which are nearly as long as the preceding; besides these long' spines both of these segments bear a few finer spines.

Redescribed from many specimens.
Male.-"Head and abdomen yellowish white; thorax yellow. The first two antemal segments white, the third at the end very weakly, the fourth and fifth more strongly shaded with gray ; the sixth is gray, at the base or even to the middle white; the seventh segment entirely gray. Wings present."-Uzel.

Food phant.. Apple, aster (cultivated), blanket flower. blue grass, cablage, candytuft, catnip, cauliflower, celery, chickweed, cinquefoil, clover, coneflower, cral)-grass, cucumber, dandelion. Ercelithitos, Erigerom canadensis, four-o'dock, garden leek, goldenrod, heal-all. honeysuckle, Jamestown weed, jimson, kale, melons, mignonette, mullein, nasturtium, onion, parsley, pink, plum, pumplin. Rublus sereral species, shepherd's purse, specillaria, squash, stonecrop, sweet clover, timothy, tolacco, tomato, turnip, wheat.

Meditut. Russia (Limdeman), England (Shipley), Italy (TargioniTozantti), Bohemia, Helgoland (Uzel), Bermuda, Tnited states: Massachusetts, ('omnecticut, New York. Long Island, Pemnshania, New Jersey. District of Cohmbia, Virginia, Florida, Kentucky, Ohio, Indiana, Illinois, lowa, Michigan, southern Canada, Colorado, Califormis.

The early stages are described by Quantance "as follows:
Eify. Length 0.26 mm .; width 0.12 mm . : in shape the egg is elliptical and curved. Fresh eggs are clear white. In eggs with adranced mimyos, the reddish eyes are distinctly visible.

Lurrue, tirst stuge- - About one-half hour after hatching). Length, 0.35 mm .; wilth of thorax, 0.14 mm .; somewhat fusiform in shape; gradually tapering caudad from fourth or fifth abdominal segment; bocly. legs, and antenne clear white; eyes reddish. Head in dorsal aspect about as broad as long; the eyes are situated at the cephatic lateral margins: no ocelli. In cephatic aspect the head is seen to be considerably produced-ventrad and caudad; suboval in outline. The four jointed antenna are borne upon the rertex, and are approximate at base. Basal joint short, cylindrical, about half the length of second; second segment subpryiform, slightly longer than wide; third subspherical. about as long as cecond; fourth joint as long as the proximal three together, club-shaped, thickest near the basal third, tapering distally to a point. Joints three and four ringed: in the distal part of four these are much more pronounced, dividing it into what might be taken for short, indistinct segments. The antenme bear seta, which are much more numerons on fouth joint. Legs stont; coxa and trochanter short: femur ahout as long as tibia and tarsus together. The tarsus appears to be composed of but one joint, which terminates distally in two diverging claw-like processes; the hadder-like expansion on tip of tarims does not seem to be present in this stage. Abdomen composed of ten segments; on the dorsmu are four longitudinal atute seta. and ar row on ach lateral margin. On the tenth segment thene setae are guite large heing from two to four times longer than the others.

Mature lirreat (seromd stage).-Length $0.9 t \mathrm{~mm}$. ; width of mesothorax 0.22 mm . Body elongate; abdomen tapering caudad from about fifth segment. Head slightly longer than wide. Color greenish yellow, varying to greenish white. Legs and antenne lighter; eyes reddish hrown: ocelli wanting. Seta practically as in stage 1 . Antemar four-jointed; hasal joint short, cylindrical; second, sub'cylindrical, about twice as long as first. Thitd joint a fourth longer

[^5]than second; subpyriform. united to second hy narrow " neck." rather closely ringed. Fourth, about as long as proximal three together, club-shaped, ringed as in stage 1 . Antenna bearing setae much more numerous on fourth joint. Tarsi without the pronouncel claw-like structures of the first stage. In other respects ensentially is in preceding stage.

Tymph (rlout two day.. ald).-Length about 0.5 mm.; width of mesothorax about 0.15 mm .; color vellowish, varying to almost colorless; eyes reddish. Pupa-skin somewhat separated from the body proper, being particularly noticeable in the caudal end of the abdomen. wing-pads, legs, and antenna. In these two latter the joints are rery obscure, the pupa-skin covering them as a sheath. The wing-pads reach to about the eighth abolominal segment. There are numerons sete on the body. antenne, legs, and wing-pads. On the abdomen they have practically the same position as in the adult larya. The dorsal sete of the last segment in the nymphs are very stout, almost hook-like, curving cephalad.

Life listory.-Dr. Lindeman's conclusions, quoted by Dr. Lintner, are so different from those which have been reached by workers mon the same species in this country that we are led to suspect that he has confused the early stages of very different species.

In Massachusetts, using specimens found infesting a cucumber house in January and February, I have found that the egg stage varies from four to seven days. Pupation takes place in seven or eight days and lasts for nearly a week, when the adults emerge and after a few days lay their eggs. The whole life cyele in a greenhouse thus occupies from three to four weeks.

In Florida Quaintance found that the egg stage lasts in summer from three and a half to four days; the larval stage from seren to nine days, during which time the larva molted twice; the nymph stage four days. the total life cycle thus requiring ahont sixteen days. There appeared to be no distinct broods at any season.

In Ohio Professor Webster has found that this species hibernates in larval, pupal, and adult stages, the first predominating, being found in matted grass or refuse tops left in the onion fields, and that they safely passed through winters when the temperature fell to -23 to - 25 degrees F .

Economic considerctions.-Dr. A. S. Packard, in 1872, was the first to record the ravages of the "Onion Thrips," which he called Limothrips tritici Fitch, believing it to be identical with the "Wheat Thrips." While Dr: Packard's description is midentifiable, it is suffi cient to show that the insect was not Thrips tritici Fitch, nor did it belong to the genus Limothrips. Furthermore, Packard states that the antemna consists of eight segments, which would separate it from Thrips tubuci, which has only seren. Still the injury recorded is so like that which is known to have been committed by Thrips. tuburei at
varions times that 1 have inchded a reference to it under this species, thongh its correctness is questionable.
()r. Packard found that this insect has been ohserved attacking onions for tifteen years previonsly, hut the damage in 1872 was unnsually serere in Eisex County, Massachusett., amounting that year to at least onc-tenth of the crop, and having a money value in that one comenty of at least $\$ 10,000$.

In 18s:, Dr: Thaxter found the Onion Thripu gencrally distributed and rery injurions to onions in Connecticut, the injury produced being known as " White Blast."

The next report of very serions injury was made by Prof. C. P. Gillette from Colorado, where for several seasons it had been noticed as yery abmendant and doing considerable harm. It has also been found a serious pest all through the Middle States and in several of the Atlantic coast States as well as on the Pacific coast. This shows its rery wide general distribution, and since its attacks seem to be most serere upon onions and cabbages - two important garden crops-it must be considered as, perhaps, the most injurious species of the order.

THRIPS PERPLEXUS (Beach).

Plate VI, figs. 66-68.
Sericothrips? perplexi Beach, Proc. Iowa Acad. Sciences, 1895, III, (1896), pp. 216-218.

Female--Length 0.935 mm . (0.80 to 1.0 mm .); width of mesothorax 0.197 mm . (0.18 to 0.21 mm .). General color: head brown and thorax reddish orange-brown, very much darker than the pale yellow or gray-brown abdomen; hody slender.

Head very large, somewhat pentagonal, approximately as long as broad or but slightly shorter, almost as large as prothorax, within which it is slightly withdrawn; cheeks nearly straight and parallel; anterior margin broadly elevated; without special prominences between hases of antenne; occiput transversely wrinkled; without conspicuous spines. Eyes hack, not protruding, together occupying about onehalf the width of the head, margins lighter colored; ocelli conspicuous, large and well separated, placed far forward, all three being in front of the middle of the eyes, reddish yellow with maroon inward margins; ocellar bristles moderately long. Maxillary palpi three segmented. Antennæ fully twice as long as head, subapproximate; relative lengths of segments:

$$
\frac{1}{5.5} \quad \frac{2}{7.6} \quad \frac{3}{10.4} \frac{4}{12} \quad \frac{5}{8.8} \quad \frac{6}{13} \quad \frac{7}{6.1}
$$

Segment one broader than two which is intermediate in thickness between one and three; three and four thickest at about their middle then tapering gradually to the ends; seven bluntly conical. Spines
long and slender, but not very conspicnons: those on three to tive nearer the middle than masal. Color of one, two, five, six, and seren brown like head: three and four pale yellowish or gray: four shaded slightly with brown, increasing toward tip: hasal constriction of five yellowish.

Prothorax not longer and but very slightly wider than the head, nearly square, without stont spines upon fore angles but with two long spines at each hind angle. Mesothorax abont one and one-half times as wide as head. slightly wider than metathorax: greatest width at hind edge: color reddish or orange-hrown. Wings reaching nsimally beyond the tip of abdomen, about one-serenterenth as hoad ans long: fore wing with two longitudinal reins; the origin of the hind rein indistinct: meither rein heary: costa set with ahout twenty quite long spines hesides the fringe hairs: fore rein bears ten to twelre rather weak spines and the hind vein about thirteen similar spines. Legs rather short; fore femora slightly thickened: yellow to graybrown, hases of bladders dark brown; spines small except row of eight or nine on inner side of hind tibie.

Abdomen nearly cylindrical and long, two and two-thirds times as long as wide; but rery slightly wider than mesothorax; last three segments very short and tapering very abruptly to the acnte apex. Color pale yellowish or grayish brown, very much lighter than thorax and head; ninth and tenth segments shading to brown-black: intersegmental membrames pale yellowish or gray. Segments not orerlapping; receptaculum seminis placed far back heneath eighth dorsal plate, rery conspicuous, bright orange-red; ovipositor indistinct, restigial; tenth segment split open above and sides nearly meeting beneath; anal spines long, slender, not very dark.

Redescribed from seren females taken on grass at Amherst, Masisachusetts.

Male unknown.
Food plants.-Cyperus sp., corm and grass (Iowa), Dactylis glomeratu, Panicum sanguinale, and various other grasses (Massachusetts).

IHabitat.-Ames, Iowa; Amherst, Massachusetts.
These specimens have been compared with Miss Beach's types and are identical. The restigial condition of the ovipositor, however, misled her into thinking her specimens all mates, whereas they are really all females.

This species is exceptional among the Terebrantia in lacking a functional oripositor, but it is surely restigial in this case. The eggs are rery large, while the ovipositor is disproportionately short and weak, and it seems that it must be impossible for this speries to deposit its eggs in the plant tissue. In this respect they thus show a divergence toward the Tubulifera, which lay their eggs wholly exter-
mally. It also seems probable that the so-called "rod" of the Tubat liforan female is but the restige of a former owipositor. The wing remation alho indicates that the Folothripidar come nearest the primitive form and that Phlunthripidar have diverged farthest from the trpe. with the Thripidat somewhere in between. This species is therefore of consideratble interest as possibly being one of the guideposts to the phyllogeny of the order Thysanoptera.
(IIARII "TERS GF TUBLLIFERA (PLEOTHRIPIDE).
The members of this suborder agree so closely in general characters that they have all been inchded in the single family Phloothripida. They are as a rule, considerably larger and more powerfully formed than the 'Terebrantia, some of them being the giants of the order.

In the insects belonging to this suborder the head is always as long as hroad. and may be two or three times as long. In most of those speries which have comparatively short heads the front is smoothly rounded, hut in those haring very much elongated heads the rertex is considerably elerated, in sone cases even forming a rery prominent conial projection of the rertex beyond the hases of the antenne. The eyes vary widely in size and number of facets. Ocelli are generally present. The cheeks are msually nearly straight and parallel, and in some species sot with more or less mmmerous spine-bearing warts. Nearly every species has a pair of well-developed spines standing immediately behind the eyes, and therefore called post-ocular spines. The antemme are invariably eight segmented in the adult stage and the sense cones on the intermediate scoments are abways simple. The month cone varies in form, being in some speeies short and blant. and none of the extermal parts are acute at the tips; in others the lathrum is abruptly constricted beyond the middle, its end forming a sharp spime-like process, which reaches beyond the broadly rounded labium; in still others the entire mouth cone, labium and all, is elongated and tapers to a quite slender tip, which, however, is not spinc-like. These different forms of month cone have been thought to possess a generie value in classification, but my studies thus far have lod me to the conclusion that too high a value has been placed upon this single chatacter. The maxillary palpi have always two segments, of which the basal is very short, and the labial palpi are also two regmented, though frequently they are short and indistinct.

The prothorax has, in most cases, a trapezoidal form, and this is espercially noticeable in those species in which the fore femora are muth enlarged. The regularity of the outline of this trapezoid is, howerer, more apparent than real, as will be seen by reference to Plates VIII, IX, and X. The projecting fore coxe fill in the hind angles so sumothly that in many cases careful focmsing is necessary to show that the outline is not entirely that of the prothorax alone. The pro-
notum usmally bears arond its outer portion a mmber of comspichons, long spines. The fore femora are frequently ereatly colarged, and when this is the case there will be found upon the fore tursus a more or less stont tooth or hook. In most seecies the femora and tameal teeth are larger in the males than in the females. The pereothoma is rery compact and nearly rectangular in outline. The wings, which are natally present, are all rery similar in form, remation, ete. They are either yuite slender thronghout or somewhat constricted near the middle, and are rounded at the tips. They have almost no veins, there being no ring or cross reins, and only one partially developed median rein in cach wing. Along the margins of each wing there is borne a long, slender fringe, which is single exeept near the outer end of the hind margin of the fore wing, where it is double for a short distance. The membrame of each wing lacks microsicopie spines such as are found upon the wings of Terebrantia. When brought to rest the wings are laid batek closely upon the middle of the abtomen, so that they orellap in their second halves. They are here held in place, and the long. slender fringes confined by the rows of inwardly curved spines which stand upon each side of the second to seventh segments. In some species the wings are reduced to short, rounded pads. while in others even these are wanting.

The abdomen is rery similar' in both sexes, except that in the male it is usually more slender, especially through the sixth, seventh, and eighth segments. The female has no ovipositor. The sexmal opening is between the ninth and tenth segments in both males and females. The last segment is a simple tube in both sexes and at its base, beneath, are found the distinctive sexual chanacters. The female is distinguished lya short, strongly chitinized rod upon the ninth segment near the hase of the tube which is regular and entire. The male is distinguished by a semicircular noteh in the hase of the underside of the tube providing an opening for the protrusion of the copulatory apparatus which is wholly retracted into the ninth segment. In many species the ahdomen is somewhat thattened dorso-ventrally so that a cross section is elliptical in outline.

Tubuliferans live usually in sechuded places, as between the parts of composite flowers, under the bark of trees, on the underside of foliage, in galls, moss, turf, fungi, etc. Their movements are very deliberate and they never run or spring.

SYNOPSIS OF PHI, EOTHRIPIDE.

[^6]ff Wins always present, hatally inhabiting flowers 5
1 Wings nswally reducod, nsually inhabiting bark or turf 7
5) (heoks without spins-learing warts Inthothrips (1. 18s)5 (Cheeks with spine-learing warts6
Fore femoral with teeth at tip within, intermerliate antemal segments um-
Fore femora withont teeth in femate amd usually in male, intermediateantemal ragments not elongaterl.Phlocothrips (1. 195)
\rightarrow Head rery laree, rounded in front Cephalothrips (1. 194)
T Heard small, narrowed in front Malucothrips (1. 200)
8 $\{$ Hearl more than twies as long as wide Idolothrip.s (1. 206)
8 fllead lesw than twiee as long as wide (ryptothrips (1. 205)
Genus ANTHOTHRIPS Uzel.

Head but little longer than wide, rounded in front; cheeks nearly parallel, without warts. Anteme nearly twice as long as the head. Ocelli and wings always present in both sexes. Wings narrowed in the middle. Mouth cone not longer than the breadth at its base; lahrum narrowed toward tip but not sharply pointed. Fore tarsi armed with a tiny tooth which is somewhat larger in males than in females. Mates without a scale at base of tube.

The two species belonging here may be easily separated by the presence or absence of spines upon the head. In A. miger (p. 188) the rheeks are smooth, without spines, and there are no post-ocular spines, while in 1. rerbusei (p. 189) the eheeks bear simall spines not standing on warts and the post-ocular spines are well developed.

ANTHOTHRIPS NIGER (Osborn).

$$
\text { Plate VII, figs. } 72-75 .
$$

Phlcothrips nigre Osborx, Canad. Entom., XV, 1883, 1. 154; Rept. IT. S. Dept. Agr. for 1887, (1888), pp. 163, 164; Ins. Life, I, 1888, pp. 137-142; Ins. Life, Y', 1892, 1p. 112-113.-Davis, Bull. 116, Mich. Agr. Exp. Sta., 1894, 115. 62, 63.

Anthothrip): nigru Lzel, Mon. d. Oril. Thysanoptera, 1890̆, 1. 242.
Femelr.-Length 1.5 mm. (1.1 to 1.8 mm .): width of mesothorax $0.3 \pm$ mm. (0.3 to 0.4 min:). General color more or less dark reddish browา.

Head approximately as long as broad, longer than prothorax, smoothly rounded in front: checks straight, parallel, and withont warts. Eyes small, tinely faceted; ocelli quite large and well separated. posterior ocelli almost contiguous with margins of eyes; no post-ocular bristles. Mouth cone shorter than its breadth at base and blunt at tip. Antemme subapproximate, as long as width of mesothorax: segments quite short and stout; fourth thickest and most rounded: relative lengths of segments ats follows:

1	2	3	4	5	6	7	8
6	111.3	12.3	12.9	11.5	10.7	10.6	$7 . \frac{1}{2}$

Color nearly uniform brown: three and base of fone rellowish brown: spines short and weak: semse cones short and blumt.

Prothorax one-half as long as breadth to outer amgles of conar; front and hind edges nearly parallel. gently curved; one short spine at each posterior angle and one nearly halfway botween this and middle of hind edge. Mesothorax somewhat wider than prothorax hut usuatly less than twice as wide as the head: side's of pterothomax nearly straight, shorter than its hreadth. Legs short and moderately stout; fore femora but slightly thickened: fore tarsi armed with it tiny tooth near tip within; middle and hind tihise with one prominent spine externally at tip. Legs brown; middle and hind tarsi slightly rellowish, sometimes brown: fore tarsi and tip of tibie yellow. Wings always present, narrower in middle than at ends, shated with brown only at hase. where fore wing bears three arect spines. Wings and fringes nearly equal: fringes single, except on hind horder of fore wing near tip, where for seven or eight hairs they are double.

Abdomen about twice as broad as head, areraging about two and one-half times as long as wide; segments orerlapping somewhat: sides nearly parallel to middle, then tapering gradually to base of tube. Tube about four-fifths as long as head, only slightly tapering: sides straight: terminal spines shorter than tube. All spines on abdomen short, weak. and not conspicuous.

Redescribed from seven specimens.
Male unknown.
Frod plonts. - drhillon mill folium, ox-eye daisy, red clover, white clorer, various grasses.

Hubitat.-Iowa, Michigan, Massachusetts.

ANTHOTHRIPS VERBASCI (Osborn).

Plate VII, figs. $76-78$.
Phteothrips verbasci Osborx, Proc. Iowa Acarl. Sc., III, 1896, p. 228.
Female.-Length 1.8 mm . (1.42 to 2.12 mm .): width of mesothorax 0.38 mm . (0.32 to $0.4 t \mathrm{~mm}$.). General color dark hrown.

Head but slightly, if any, longer than wide; cheeks neally straight and parallel, set with few minute spines; post-ocular bristles prominent: hind margin of head not covered by front margin of prothoma. Eyes fincly and clowely fareted, rounded, not protruding: ocelli widely separated, posterior ones contignous with the light margins of eyes; front ocellus placed at extreme vertex. Mouth come about as long as it is broad at hase. pointed. Antema approximate. almost twice as long as head; relative lengths of segments:

1	2	3	t	.5	6	7	8
9	12	1.5	15	1.5	$1 t$	12.6	10.6

Segment three davate: foul fusiform: five and six becoming more shender and less fusiform: seren cylindriad: eight sharply conical. Gegment one and base of two dark hrown; tip of two, seven, and eight yellowish brown: intermediate segments pale yellow. Spines pale and weak: sense cones short and blunt.

Prothorax short. only about three-fourths as long as head; fore and hind margins nearly parallel and curving backward; one stout spine at each angle, one in middle of sides, and one on each side between those at the angle and the median line on both fore and hind margins; hind angles appear to entirely corer the fore coxa as a rule; each fore coxal beats one stout spine. All these stout spines are blunt but not knohbed. Sides of pterothorax full and smooth: fore angles ohlique; (oolor of thorax miform dark brown or yellowish brown, more or less irrexularly mottled with dark red. Winge present, narrowed in middle, transparent except at hase, where the fore wing bears three long spines upon the remnant of the single median rein. Fringes long, single, axeppt near end of hind fringe of fore wing where it is donble for ten or twelve hairs. Legs moderately long and slender; fore femora only slightly thickened; fore tarsus one segmented and armed with a tiny tooth. All femora and middle and hind tibie dark hrown; middlo and hind tarsi slighty yellowish or grayish brown; fore tibie and tarsi bright yellow like middle of antemme; fore tibia shaded a little with hrown toward their bases outside. One long slender spine near hase of each fore femur below: each fore coxa with one long spine.

Abdomen broadly joined to metathorax and but slightly wider, widest at hase but less than twice as wide as head; segments more or less imbriate, tapering gradually to tube. Tube about four-fifths as long as head, tapering slightly, not swollen at hase, bearing a circlet of spines at tip which are shorter than the tube. All spines on abdominal segments slender and rather faint; color of abdomen quite uniform yellowish brown to dark brown. In the lightest colored specimens the irregular dark mottlings show up most prominently.

Redeseribed from right females.
Male. The male agrees quite closely with the foregoing description; it is usially somewhat smaller throughout; relative lengths of antemal segments are ats follows:

1	2	3	4	5	6	7	8
.5	11.5	13.5	14.5	14	12.8	12	10

Fore tarsi are armed with a medium-sized tooth, which is larger than that in the fomale. Of the four spinesstanding near the hind edge of the ninth segment, the outer pair is very short, stout, and aente; the abdomen seems to be somewhat more slender than in female.

Described from four males.

Frord plant. Mullein.
Halritat.-Ames, Iowa: Amherst. Matsandmeett.

Genus TRICHOTHRIPS Uzel.

Head about as broad as long, broadly rounded in front. Eyes small. Ocelli present in both these species, but often wanting. Mouth cone not longer than its breadth at hase: labrum pointed at tip. Fore femora somewhat enlarged and tarsi armed with a tooth. Wing:s usually wanting, hut present in both these species, slender thronghout. Abdomen very broad and heary; tube very slender in proportion to width of abdomen: no scale at base of tube in the male.

The two species which I have placed in this genus may be distinguished by the following characters:
Tube fully as long as the head . beurni (1. 192)
Tube two-thirds as long as the head. cmbitus (1). 191)

TRICHOTHRIPS AMBITUS, new species.

Plate VIII, firs. $81,82$.
Femali. Length 2 mm.; width of mesothorax 1.45 mm . (ieneral color brownish yellow shading to brown or reddish hrown.

Head slightly longer than wide, widest just behind the eyes, rounded in front: checks straight and converging posteriorly; at hind edge only six-serenths the diameter at widest part; frons slightly clevated between bases of antenne; post-ocular bristles present: a few sattering small spines upon head not raised upon warts; sulface faintly reticulated. Anterior half of head light brown flecked with recldish, posterior half fading to yellow at the neck. Eyes small, finely gramulated. compact, not pilose, purplish by transmitted light, reddish orange by reffected light; ocelli present, subapproximate. pale yellow margined inwardly with reddish brown crescents. Mouth cone reathing nearly to posterior edge of prosternum; maxillary palpi two segmented; labial palpi short and thick; labium hroad and rounded; maxillæ converging abruptly below the palpi and short. Antemne one and three-fourths times as long as the head, eight segmented, though the joint between seven and eight is very indistinct; relative lengths of segments as follows:

$$
\begin{array}{cccccccc}
\frac{1}{12} & \frac{2}{18} & \frac{3}{25} & 4 & 5 & \frac{6}{26} & \frac{7}{21} & \frac{8}{20} \\
\hline 15 & \frac{1}{8}
\end{array}
$$

Segment one truncate, conical: two constricted toward base into a broad stalk, cut off squarely at end: three to seven slenderly stalked at bases; three to six clavate; seven cylindrical-ovate, very closely united by full width of end to eight which is conical. Color of one pale brownish yellow; two and three clear yellow: four yellow at hase
-hading to light hrown at end: remaining segments dark brown. sume cones on segnenter three to six very long and slender: tramsparent spmes upon each segment also long and slemder.

Prothorax thre-fourths as long as head and three fifths as long as widn: fore cona project considerably beyond posterior angles. One medium length spine on each side of middle and near anterior edge, one nat each anterior angle. one at middle of each side and one longer one at cath posterior angle. Mesothorax equal in width to prothorax and concolorons with it; mesonotum bears one long spine dose to base of each fore wing. Metathorax equal in width to mesothorax. narrowed but rery slightly posteriorly, pale yellow in middle, shaded on siden. splashed with red. Each fore coxa bears a single long spine on outer side: fore femmeramewhat enlarged: each femur bears a single long, erect spine on the outer side near its extremity: tarsi show and thick, fore pair armed with a stout tooth. Femora gray-hrown. fore pair yellowish brown; fore tibiæ and tarsi pale yellow: middle and hind tibie and tarsi ahmost white. Wings reaching to tip of abdomen; both pairs equal in size, edges parallel, heavily fringed: fore wings bearing a costal group of three long slender spines hetween the fringe and base of wing. Color of wings clear, tramsparent, except a slightly clouded band across fore wings at about one-third their length.

Ahdomen hoad and heary: last three segments tapering abroptly; at sixth segment one and one-sixth times as broad as thorax. Tube two-thirds as long as head and at middle one-serenth as broad as the fourth abdominal segment; terminal spines about as long as tube. A stont bristle projects anteriorly from each side angle of first segment; each following segment. except tube bears on each side one spine; these are short upon first segment and increase in length and size posteriorly. Color hrownish yellow in middle, shaded with dark reddish brown on sides: tube bright hrownish yellow tipped abruptly with grap-hrown.
iescribed from one female.
Mate unknown.
Foocel plent. (irass.
Itubitut. -Amherst, Mansachusetts.

TRICHOTHRIPS BEACHI, new species.

Plate VII, fig. 79; P'late V'III, fig. 80.
Fommens- Length $1.8 t$ mm. (abdominal segments one-third toleseopect): width of mesothoma 0.48 mm. (ieneral color yellow-brown.

Ilead a* broad as long, rounded in front; cheeks slightly converging behind the middle, set with seattered, small, stout spines borne upon small warti; post-ocular bristles quite long and acute. Eyes small. fincly faceted, rounded; ocelli large. distant, posterior two almost
contignons with light yellowish margins around eyes. color reddish yellow. Antenne more than twice as long as the head; length and breadth of segments increase gradually from hase to middle, then decrease to tip of antenna; relative lengthis of segments ans follows:

$$
\begin{array}{cccccccc}
\frac{1}{9} & \frac{2}{15} & \frac{3}{22} & \frac{4}{2} & \frac{5}{19} & \frac{6}{17} & \frac{7}{14.5} & \frac{8}{13}
\end{array}
$$

Color dark brown: bases of three to five yollowish; spince of medium length, but not very comspicuons; semse cones about onethird of the length of the segment barmg them.

Prothorax ahout five-sixthe as long as head, and nearly twice as broad as long, broadly rounded at hind edge; spines upon fore edge much smaller and weaker than the mid-lateral and those on hind edge: all these spines are acute. Mesothorax abont one and one-half times as wide as prothorax, uniting closely and evenly with metathorax so that sides of pterothoras are nealy straight. Wings present, long and powerful; fringes long, double for from nine to eleven hairs in hind fringe of fore wing near tip. Legs of medium size and length; fore femora a little thickened and tarsi armed with a very tiny tooth: middle legs much the smallest. All femora chestmut brown: tihis at hase brown, fading to yellowish at tips: fore tibiee lightest: tarsi yellow. Fore coxie project a little beyond sides of prothorax and each hears one long spine: each femur bears one long slender spine on under side near base: three or four long slender spines stand around tips of middle and hind tibiar.

Abdomen large and heary, somewhat broader than thorax, slightly more than twice as broad as head: segments overlapping about onethird; sides nearly parallel up to eighth segment, then tapering very abruptly. Tube slender in middle, about one-eighth the breadth of the abdomen, fully as long as the head, tapering but slightly; terminal circlet of spines shorter than tube; spines on abdomen light colored.

Color of whole borly generally yellowish brown, lightest along middle of back of thorax and abdomen; abdomen darkest where segments overlap: thorax and abdomen show some irregular dark red hypodermal pigmentation. All spines antute.

Described from one female taken under quince bark in carly spring, together with many bright-red larva around it.

Male unknown.
Food plant.-Taken under quince bark.
IIabitet.-Amherst, Massachusetts.
I take pleasure in naming this species for Miss Alice M. Beach in recognition of her work upon the Thripide of Iowa.

Proc. N. M. vol. xxvi-02--13

Genus CEPHALOTHPIPS Uzel.

Head considerably longer than its hreadth or the length of the prothorax, hoadly romed in front and larger than in most species in proportion to the other segments. Eyes small: ocelli present. Antennat about one and one-half times the length of the head. Nouth cone shorter than its. breath at base: lahrum not marowed in the middle and ending in a hlunt point. Fore femora slightly thickened and tarsi with a tiny tooth. Wings usually reduced or wanting entirely. Male without a seale at base of the tube.

I plate here onty one speremen yherat.
CEPHALOTHRIPS YUCC \notin, new species.
Plate VIIL, fige. s: s, st.
Fimmle.-Length 1. th mm. (1.40 to 1.56 mm .); width of mesothorax 0.29 mm . (0.28 to 0.30 mm .). (ieneral color yellowish brown, irregularly mottled with ctark-red hypectermal pigmentation.

Head hroad and large, athout one and two-fifthe times as long as wide; cheeks slightly arched and smoothly joined to eyes, converging slightly toward neck; front smoothly rounded: post-ocular bristles present, but rather small and not prominent: cheeks smooth. Eyes small, eath being less than one-fourth the breadth of the head through them, triangular above and surface even with that of head, rery dark red in color: ocelli small, situated far forwand, quite widely separated, with very dark red imner margins. Mouth cone short and rather blunt. Antenna nearly one and one-half times as long as head, considerahly separated at bases with but slight elevation between them; relative lengthe of segments as follows:

$$
\begin{array}{cccccccc}
\frac{1}{6.5} & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
11.6 & 12.5 & 12.5 & 11.8 & 11.3 & 11.2 & 8.2 .5
\end{array}
$$

Segments thre to tive subequal in breadth and similar in shape. Antemne yellow, segments one and two shaded with brownish. Sense cones quite long and slender; spines shorter and light colored, so inconspichous.

Prothorax two-thirds as long as head and aroms outer angles of coxat about one and two-fifths times as wide as head; sides of thomax really considerably indented ahove fore coxie. Anterior marginai and mid-lateral spines wanting; those at angles present, but weak and inconspictors. Pterothorax as brad as prothorax through coxa, equal to about one-fifth the length of the body; its sides straight and parallel: whout four-fifthe as broad as abdomen. Wings usually reduced to mere pads, but when occasionally present they are of modcate longth, though not very powerful. (Winged specimens have the
pterothorax nearly as wide as the abdomen.) Legs rather shom and thick: fore coxa project sommwhat heyond thorax; fore femora slightly thickened and the tarsi armed with a tiny tooth: tibia of earh leg slightly shorter than its femur'; all tarsi short and thick. All femora and middle and hind tibia brown: all tansi and fore tibia. exerpt at base ontside, pale yellow; a prominent bown apot at tip of tansi within.

Abdomen about three-fifthe the lengeth of the borly: about one and one-fourth times as broad as the menothorax; nearly alindriat to serenth segment, then sides curve smoothly to base of tube. Tube less than one-half as long as head and at middle only about one-ninth the breadth at middle of abdomen. Spines on abdomen of moderate length, slemder, acute, light colored, and not prominent. The abdomen is darkest at sides and tip: on earh side of segments two to eight, sightly outside the line of wing-confining spines, there is a rounded or elliptical clear yellow spot. The body lacks any striking coloration.

Described from ten wingless and two winged females.
Cotyper Cat. No. (i:331, U.S.N.M.
Male.-The males are ahout five-sixthe as large as females. Their antemme are about one and two-fifthe times as long as the head: there appears to be less difference in the length of antemal segments than in female; relative leugths of segments as follows:

1	2	3	$\frac{1}{2}$	5	i	7	8
6	10	11	10.25	10	9.75	9.75	$7 . t$

Ablomen abont one and one-fifth times as broad as mesothorax; tube about one-half as long an head and at middle about two-tifteenth: as broad as middle of abdomen.

Described from nine males, all short winged. All of my males were taken in september, and it may he that winged pecimens occur earlier in the season.

Cotype-Cat. No. (:331, U.S.N.M.
Food plantis.- Y'ucal , filammentosis, goldemrod.
Ihebitut.-Amherst, Massachusetts: Washington, District of Columbia.

Genus PHLEOTHRIPS Haliday.
Head somewhat longer tham wide: checks with small warto, cath bearing a tiny spine. Intermediate antemal segments not particularly elongated; the whole antenna less than twice as long as head. Mouth cone as long or longer than its breadth at base and narrowed; labrum sharply pointed at tip. Fore femur enlarged and tarsus. armed with a tooth. Wings not narrowed in middle, present in both sexes. No scale at base of tube in male.
a place two species in this eroms. They may be separated by the following charaters:
All femota dark hown; tibia ank tani hright yellow.........................zeli (p. 196). Legse grat-brown; tarsi somewhat lighter; fore tibix yellowish_ . - pergandei (p. 197).

The lemale of the speceies mati comes within the definition of the gemmerhlowllorifs, lot the make of this species has the teeth at the tip) of the fore femora, which is the principal ehalaterer upon which L'zol has separated his gemus A Ambthothrijes. This species, therefore, appears to mite the characters of these two genera, and as more emphasis is phared upon the deseripetion of the female than upon that of the mate. I hare prefered to imelude this species in the established gemes Ihluenthrigs rather than to rrect a new erome for it.

PHLEEOTHRIPS UZELI, new species.

 0.39 mm . (0.3 s to $(1.40 \mathrm{~mm}$.) (ieneral color dark brown with yellow thilie and tarsi.

Head about one and one-fouth times as long as wide, rounded in front: cheeks mearly straight and paralleh, sot with several short, stout -pines borme upon small warts; postocular bristles quite long and knobbed. Eyes moderately laree rounded, finely faceted; ocelli prominent. distant, reddish ycllow, posterior ones contiguous with light borders of ryes. Mouth cone long and pointed, reaching to posterior adge of prosternum. Antemna abont one and three-fourths times as long as the head, slighty more than twice as long as width of head; relative lengths of negments ats follows:

$$
\frac{1}{9.7} \quad \frac{2}{12.3} \quad \frac{3}{18} \quad \frac{t}{18.3} \quad \frac{5}{16} \quad \frac{6}{1+.3} \quad \frac{7}{13.3} \quad \frac{8}{8.5}
$$

Segments one and two dark hrown: three bownish yellow, lightest at hase: fom to six light hrown, pale yellow at hase; seven and eight light brown; spines long but not very dark colored; sense cones orer one-third the length of the segment bearing them.

Prothorax two-thirds as long as head, and to angles of coxae twice as wide as long'; bisual anterior marginal, posterior marginal and midlateral pimes present, knobbed. Nesothorax slightly wider than prothorax; sides of pterothorax straight and converging a little to base of abdomon. Wings long and powerful. Legs of medium length and quite stont; fore femora somewhat thickened and the tarsi armed with a small tooth; middle of onter surface of each fore tibia and femmr supports one long sfonder spine near the base on mader side. All femora dark hrown: all thhis and tarsi bright yellow, the middle and hind ones being slightly shaded with brown.

Ahdomen large and stont, about four times as lomg as head, as wide at mesothorax; sides nearly parallel to serenth segment. from there tapering roundly to base of tube; segments orembaping about omethird. Tuhe four-fifthe as long as had; sides straight and converging slightly: breadth in middle one-seventh that in middte of abdomen; terminal circlet of hairs about the length of the tube, reer senders. Spines on sides of ahdomen bhat; abdomenquite uniformly yellowish brown (dark hrown where segments overlap).

Described from three females.
Cutype-Cat. No. 6:332, U.S.N.M.
Mofl.- Males about six-serenths as iarge as females. Cheeks slightly fuller: relative lengthe of antemal segments an follows:

$$
\begin{array}{cccccccc}
1 & 2 & 3 & t & 5 & 6 & 7 & 8 \\
- & 11 & 15.6 & 15.9 & 13.9 & 12 . t & 11 & 7.9
\end{array}
$$

Fore femora larger than in female and terminating in two teeth at tip within; fore tibiae have each a small tooth near hase within; teeth on fore tarsi large. (The teeth upon femomand tihia are not found at all in the female of this species.) Tube at middle about one-sixth the width at middle of abdomen: abdomen tapering slightly.

Described from five males.
Cotype. Cat. No. 6:332, U.S.N.M.
Fored plents.-Taken on various grasses, clover. and Tlmens montanel var. pendula.

Incbitut.- Amherst, Massachusett..
This species is named for Dr. Henry Uzel, of Königgrittz, Bohemia, whose Monograph of the Order Thysumptera is hy far the best work that has heren pmblished upon this order.

PHLGEOTHRIPS PERGANDEI, new species.

Plate V'III, figes. sif, sis.
Frmale-Length 1.6 s mm. (alodominal segments overlapping for ahont one-fourth their length); width of mesothorax 1). 42 mm . (ieneral color fellowish hrown, with considerable irregular red hypodermal pigmentation.

Ihead ahout one-sixth longer than wide, widest dose behind the "yes, rounded in front; cheeks slightly curved and halging behind eves, converging slightly posteriorly, set with a mumber of shott. stout spines borne upon quite prominent warts: post-ocular bristles long and knobbed. Eyes ahout medinm in si\%e, slightly clongaterl. tinely faceted; ocelli quite large, distinct, sulapponimate, reddish yellow with dark red crescentic margins, situated well forwand upon rertex, which is slightly elesated. Nouth cone quite longe, rawhing to hack of prostermm; lahrmm sharply peinted and werraching the
hathem. Antemme twice as long as width of head; relative lengthe of vegmente as follows:

$$
\begin{array}{cccccccc}
\frac{1}{11} & 2 & 0 & \pm & \frac{5}{6} & 6 & 7 & 0 \\
111 & 1+ & 2.2 & 21 & \frac{1}{17} & 14 & 13 & 8.5
\end{array}
$$

Color of antoma boom with hases of three. four, five, and six decreasing in areat and intensity of yellowishmess; sense comes about ome-third the length of segment three: spines quite long, dark, and conspicturs.

Prothorax only five-serenthe a long ta head, and to outer angles of fore coxar slightly more that twice as wide as long: nsmal prothoracic spines present, quite long and knobbed. Nesothorax as wide as width arross fore coxe, closely joined with prothomat pterothorax very compact. sides converging slightly to hase of atodomen. Wings long and powerful. Legs quite strong; fore femora much thickened, over one-half as hroad as head: fore tarsi armed with a small tooth. Color of legs uniformly gray-hrown; tarsi somewhat lighter; fore tibise yellowish, shaded with hrown at bases and on top.

Abdomen less than twice as hroad as head, equal in witth to mesothorax, nearly eylindrical to eighth segment: eighth and ninth taperinge alsuptly to base of tube. Tuhe only two-thirds as long as head; sides straight. tapering somewhat; breadth in middle about one-eighth that of middle of abdomen; terminal hairs a little longer than tube. All large spines on body, exeept those on hind edge of nine and at tip of tube are short and knobbed; those on nine and tube are atoute. Color of abdomen pale brownish yellow. lightest in middle; hoodreal pigmented tiswie contined mostly to sides of aldomen in this specimen.

Described from one female.
Male unknown.
Forel plent. - Taken on grass.
Hul)itut.-Amherst, Masisachusetts.
I name this species for Mr. Theodore Pergande, by whom several of our mative spectes have been described.

Genus ACANTHOTHRIPS Uzel.

Head somewhat longer than wide; cheeks with spine-bearing wart. Antemae very nearly twier als long as head; intermediate segments elongated and bearing very long sense cones. Mouth cone considerably longer tham its breadth at hase and quite slender.. Fore femora enlarged in hoth sexes and with one or two teeth at tip within; tarsum armed with as stont tooth (lyel satys the tooth is weaker in the male than in the female). Winge present in hoth sexes. No scale at hase of tube in the male.

I have placed the single species mutnufimmorlis in this genus, though I do not know the female. The characters of the fore femora and antemat are sufficient to siepanate it generically from Ihlorothrips.

ACANTHOTHRIPS MAGNAFEMORALIS, new species.

$$
\text { Plate } 1 \times \text {, figs } 9: 3,9+
$$

Make. Length 2.14 mm.; width of mesothorax 0.42 mu. General color yellowish brown with antemax. legs, and eighth and ninth abdominal segments banded with nearly tramparent or yellowish white.

Head nearly one and one-fourth times as long as wide; rheeks butging abruptly and greatly behind the eves, then conserging to the neck, which is as wide as the diameter through the eyes: cheeks, enpecially anterior parts, set with short spines borme upon very prominent tubercles; front between eges very marow, carinated. Eyes large, finely faceted, reniform above, imer edges parallel: ofelli small, approximate, and placed between the middle of the eyes. Proboscis long, slender, pointed: labrum shanply pointed. Antemae scarcely twice as long as the head and very slender; relative lengths of segments as follows:

1	2	3	4	5	6	7	8
10	12	29	26	23	15	15	9

Segments one to five subequal in thickness; three to five similar in shape, clongated, urn-shaped; eight sharply conical. Segments one, two. seven, and eight quite uniformly dark brown; bases of three to five and tips of three and four pale yellowish, nearly white on three; six entirely pale yellow, with slight brownish tinge on outer half; antenna appear amulated with pale yellow and dark brown. Spines and sense cones long. slender, and light colored; the cones on three to five fully one-third the lengeth of segment three and on six about threefifthe its length.

Prothorax about two-thirds as long as head; width to onter angles of coxie neally twice its length: tramserse margin nearly straight; the usual stont spines on thoma and abdomen, except those at tip of tube, are extremely short and blunt. Mesothorax slightly wider than the abdomen: middle of pterothorax coneaved slightly. Wings long and rather slender. Legs moderately long: fore femora extremely thick and large. almost as wide as length of fore tihise; fore femora armed with as stont tooth at the tip within; fore tibia bent outward at base; fore tarsi one segmented, armed with a rery stout tooth; middle and hind tibia rather short and swollen in the middle, their tibies quite shonder and their tarsi two segmented. Fore femora yellowish hrown; fore tibiae and tarsi pale yellowish, tibise alone shaded with brown on middle of outside: middle and hind femora almost tramsparent white at base, outer half shaded with brown and having a
romedish, light yellowish spot on side of dark area: middle and hind tibia pale yellowish at hase and tip, banded with dark brown around the midde, these tasi pale yellow, brown at tips; surface of all legs rough, being thickly sot with mimute warts, eath bearing a small "piue.

Abdomen alout two-thirde the length of the body, tapering gradually from serond segment to tip; width at serond segment but slighty less than that of mesothorax. Tube slightly more than three fourths as long as head; diameter at middle of tube about one-sixth that at middle of abdomen. Sides of metathorax and surface of abdomen, up to ahout the seventh or righth segment, peculiarly roughened with closely set small warts, many of which hear small spines. The tube is nealy erlindrical, without a scale at its base, and at the tip bears a circlet of eight extremely long, slender, acute hairs, whech are nearly three times as long as tube. The hasal third of tube is very pale yellowish white: the onter two-thirds is abruptly brown-hatack: segments eight and aine pale yellow; three to seven appear irregularly striped with pald yellow and dark brown; dorsal stripe pale yellow and about the width of the wings: a suldorsal row of dark-hrown, semicireular spots, which stand one in the middle on each side of these segments with the straight side toward the dorsal line, gives the appearance of a subdorsal stripe; then follows on each side an irregular. pale yellow stripe. and the middle of the sides of the segments is shaded with brown. Spines on sides of abdominal segments and the back of eighth and ninth are extremely short and bout.
1)escribed from one specimen.

Female unknown.
Fiment plant. - ?
Ilnlitut. Miami. Florida.

MALACOTHRIPS, new genus.

Iend plaimly longer than wide and narrowed in front. Cheeks full and with spine-bearing warts; vertex elevated. Antemne nearly twice as long as head. Month cone as long as its breadth at hase, reaching the hind edge of the prostermum; labrum quite sharply pointed at tip. Prothorax two-thirds as long as head. Pterothorax somewhat constrieted in middle. Fore tarsi with a tiny tooth. Wings usmally redued to pads. Abdomen large and full in the female. A closely lyinge sala at base of tube in the male.

This genus contains only one species, amutus.
(mudarkes, soft: Hpul.)
MALACOTHRIPS ZONATUS, new species.
Plate IX, figs. 95-98.
Framle- - Length 1.foz mm. (1.50 to 1.68 mm.); width of pterothorax

thorax and segments one, three, four, and five of the ahdomen; head and other abdominal segments brown. Body apparently weakly chitinized.

Head nearly one and one-third times as long as wide, narrowed in front; cheeks moderately full and set with a few small spines borne upen small warts; head appears constricted close behind the eyes, and slightly so at neck; post-ocular liristles well developed: front of head between eyes developed into a prominence bearing the antemae: vertex produced into a sort of hump, which, howerer, does not overreach the insertion of the antemae. Eyes small, tinely faceted, dark purplish red, surrounded by pale yellow margins: ocelli present, subapproximate, borne well forward upon the hump, the front ocellus being upon its vertex; pigmentation around ocelli hright red. Nonth cone moderately long and slender; labrum abruptly constrictel and sharply pointed at tip. Antemar approximate at base, almost twice as long as head; relative lengths of segments als follows:

$$
\begin{array}{cccccccc}
\frac{1}{9.8} & \frac{2}{13.5} & \frac{3}{18.4} & \frac{t}{16.5} & \frac{5}{15.8} & 6 & 7 & 8 \\
13.9 & 12.4 & 11.4
\end{array}
$$

Basal segments large, truncate-conical, phaced divergently: three clarate; from three to eight the segments beeome gradually more narrow. Antenne nearly uniformly brown, except three, which is yellowish brown; spines and sense cones quite long, but slender and light colored, so inconspicuous.

Prothorax about two-thirds as long as head and across onter angles of coxa about twice as wide as long. All the usual prominent prothoracic spines well developed, hut light colored; hind margin not sharply defined. Pterothorax in middle slightly narrower than width across fore cosa; mesothorax short, slightly narrower than metathorax and slightly brownish yellow in color. Wing- reduced to rery small pads, each fore pad bearing three quite long, blunt spines. Legs of medium length and middle and hind pairs quite slender: fore coxae projecting considerahly heyond thorax: fore femora slightly thickened and tarsi armed with a small tooth. All legs pale yellow or pale brownish yellow with prominent brown spot within tip of tursus.

Abdomen about one and two-tifths times as broad as metathorax, quite stout to eighth segment, then sides converging to hase of tube. Tube about three-fourthe as long' as head and one-third as wide at middle as long; sides straight, tapering slightly; terminal spines about as long as tube; spiues on sides of ahdomen pale. hut quite prominent in reduced light. Segment one is concolorous with metathorax; three to five are clear, bright yellow; two, six, seven, and eight are yellowish brown, darkest on sides; nine and tube are darkest brown.

Described from four females.
Cutype.-Cat. No. 6333, U.S.N.M.

Mele. Lemgth about five-sixths that of female: head and prothorax nearly as long as in fomalo; relative lengths of antemal segments ats follow:

1	2	3	4	5	6	7	8
10	11	16	14	13.5	11.8	10.5	9.5

Abdomen onty about four-fifthe as long or ats broad as in female and tapering more iniformly from base to tip.

Described from two specimens.
Cotype- Cat. No. 683: U.S.N.M.
Formel plont.-Takron in turf.
IHebitut.- Amherst, Massachusetts.

> EURYTHRIPS, new genus.

Head as long or somewhat longer than wide, narrowed in front. Eyes small and vertex between them elevated. Antennae fully twice as long as the head ant thicker than in most species. Prothorax about two-thirds the length of the head. Fore tarsi with a small tooth, which is larger in the male than in the female. Wings usually reduced to short pads. Abdomen umbsually large and heary in proportion to the rest of the body. Nales with a closely lying salu at the bise of the tube.

The suecies ampliventralis is the type of this genms.
(Evpus, broad; Apu4.)
The two spestos belonging to this genms may be separated by the breadth of the abdomen, which in ampliventralis (p. 202) is about one and two-thirds times as wide as the pterothorax. while in osbormi (p. 203) it is only abont one and one-fourth times as wide as the pterothorax.

EURYTHRIPS AMPLIV̊ENTRALIS, new species.

Plate IN, figs. 99-101.
Female.-Length 1.05 mm . (1 to 1.20 mm .) ; width at middle of pterothorax $0.9 \pm$ mm. (0.22 to (1.25 mm.). General color of head and legs clear yellow to browrish yellow; body shading posteriorly to dark brown beyond middle of albdomen.

Head slightly longer than wide, slightly narowed in front, broadest at neck; cheeks diverging gradually behind the eyes; rertex drawn out into a hump between and in front of the eyes; post-ocular bristles quite long; head rlear. brownish yollow with some red hypodermal pigment on vertex. Eyes extremely small and composed of but very fuw large facets, slightly protruding, oval in outhine, black; ocerli wanting. Mouth cone short and blunt; labrum not constricted beyond middle. Antennse approximate, large, and heary, fully twice the longth of the head, with peculiar, semicircular, shelf-like support visible on moder side at base; relation lengths of segments as follows:

1	2	3	4	5	6	7	s
9.2	10.4	$1+.8$	13.5	12.5	11.9	$\ddots .5$	6.4

Segment one is hroadest. crlindrical, and following segmentsdecrease gradually in diameter; thee is clavate, four to seren each harelshaped, with a short stalk. Antemal segments shade gradually from concolorous with head at hase to very dark brown at tip: spines and anse cones very long, slender, and quite prominent.

Prothorax quite variable in length, butaveraging slightly more than two-thirds as long as head; width also unusually variable, but averaging twiee its length and equal to width of pterothorax. Anterior marginal spines wanting; others present, moderately long, blunt, but not knobbed. Pterothorax very small, rather shorter than prothorax and natally slightly narrower. Wings reduced to mere pads. Fore and middle legs rather short and thick, but hind leg's quite long and slender: fore femora hat slightly thickened and tarsiamed with a tiny tooth. Legs concolorons with head; femora shaded somewhat with hrown, hut withont hypodermal pigment.

Abdomen exceedingly large and heary, about one and two-thirds times as broad as pterothorax: posterior half rounding up to base of tube. Tube fully two-thirds as long as head and almost one-half as broad at middle as it is long; sides straight and tapering evenly; terminal hairs slightly shorter than tube: spines on sides of alodomen quite long and prominent.

Prothorax concolorons with head, but much more suffinsed with irregular, hright red hypodermal pigmentation. (Seen by reflected light on white background.) Pterothorax and base of abdomen more shaded with brown, and the latter becoming darker toward tip, where it is dark brown or almost hark. Pterothorax, and sides of abdomen especially, thickly marked with bright red hypodermal pigment.

Deseribed from tive females.
Cotype.-Cat. No. 6334, U.S.N.M.
Male manown.
Food plent. -Taken in turf in fall.
Hub)itut.-Amherst, Massachusetts.

EURYTHRIPS OSBORNI, new species.

Plate X, figs. 102, 103.
Female. Length 1.12 mm . (1 to 1.22 mm .): width of mesothorax 1.27 mm . (0.25 to 0.30 mm .). (reneral color light yellowish hrown to dark hrown; head and legs yellow.

Head approximately as long as wide, narrowed in front; the antemme standing upon a triangular projection between the eyes; head enlarged quite abmptly behind the eyes: cheeks not converging posteriorly. Eyes very small, depressed, finely faceted, almost oval in outline,
back: ocelli present. small, frequently more or less hidden by irregular dark-ved local pigmentation, placed well forward upon an elevation between the eyes: positocular bristles quite long. Mouth cone short and Jhunt: labmon not constricted abruptly. Antenne very large and long, fully two and one-half times ang lons head, with a semicircular, shelf-like support below loses; hases approximate; clecation between them extending half the height of first segments; relative lengths of segmemte atolow:

$$
\begin{array}{cccccccc}
\frac{1}{8.3} & \frac{2}{10.5} & 3 & 15.3 & \frac{4}{14.2} & 5 & 6 & 14.2 \\
11.9 & \frac{7}{10} & \frac{8}{9.9}
\end{array}
$$

segment one large and eylindrical: two eup-shaped: three very whem at base. clavate; four to seven also slender at hases, decreasing graddally in diameter and length of stalk; eight enlarging to one-third it. length and then tapering to a sharp point. Color shading gradually from concolorous with head at hase to dark hrown at tip. Spines and senser rones long, slender, and quite conspicuons. ILead clear, pale yellow to brownish yellow.

Prothorax and pterothorax (in short-winged specimens) along dorsal line, each approximately as long as head; width of prothorax across coxa nearly twice its length, its sides indented considerably above them. Anterior marginal spines wanting; others present as usual (at angles, mid-lateral and posterior marginal) long, slender, and blunt. Mesothorax approximately as broad as prothorax; in long-winged specimens about one-fourth longer than in short-winged, and also slightly fuller. Legs short and moderately stout; fore femora hut slightly enlarged and tarsi armed with at small tooth; one long, erect, knobhed spine upon the back of each femm. Legs yellow; femora shaded with brown; in darker specimens femora more strongly shaded.

Abdomen large and heary; fore angles abrupt; about one-half as wide as long; nearly eylindrical to serenth segment, then sides curve roundly to hase of tube. Tube as long or slightly longer than head, ahout one-third as broad in middle as long, more slender in outer than in hasal half; terminal spines only about two-thirds as long as tube; those on sides of abdomen quite long and prominent, knobbed.

Thorax and abdomen uniform in color, abruptly darker than head and legs, ranging from yellow-brown to dark brown, with considerable dark red, irregular, hypodermal pigmentation.

Deseribed from ten females, eight long and two short winged.
('otyp"-Cat. No. 6235, U.S.N.M.
Mrello-Males ahont six-serenths as large as females. Relation lengths of antemal segments an follows:

$$
\begin{array}{cccccccc}
\frac{1}{8} & \frac{2}{10} & \frac{3}{12.6} & \frac{4}{12} & \frac{5}{12} & \frac{6}{10.2} & \frac{7}{8.6} & \frac{8}{8.6}
\end{array}
$$

The prothorax is a little wider than the mesothorax. Fore femora

Deseribed from five males, all short winged.
Cotype.-Cat. No. 63335, U.S.N.M.
frood plants. - Grassies.
Ifubitut.-Amherst, Massachusetts.
This species is named for Prof. Herbert Osborn, who hatw for many years shown considerable interest in the study of these tiny insects.

Genus CRYPTOTHRIPS Uzel.

Head eylindrical. fully one and one-half times as kong as wide. Eyes large and prominent. Verter strongly elevated and bearing the anterior oceilus at its extremity. Mouth cone about as long ats its brealth at base and reaching abont two-thirds across the prostermum; labrum hunt. Prothorax about as long as width of head. Legs slender; fore femora but slightly enlarged; fore tarsi unarmed. Wings present, slightly narrowed in middle. Nale with at scale at hase of tube.
I find only one species helonging to this gemus, uxperisus.
CRYPTOTHRIPS ASPERSUS, new species.

Plate N , fige. 104-106.

Femele. - Length 1.68 mm . (1.45 to 2 mm .) ; width of mesothorax 0.32 mm . (0.28 to 0.36 mm .). (General color yellowish hrown to brownback; body and legs considerably marked with irregular. dark-purplish, hypodermal pigmentation.

Head cylindrical, one and one-half times as long as wide, about as wide as length of prothorax; cheeks almost straight and nearly parallel, set with a few minute, slender spines: postocular bristles short; surface of head finely cross-striated. Eyes quite large, finely fareted, rery slightly protruding, dark-purplish red with pate yellowish inner margins; ocelli present, small and inconspicuous, frequently concealed by local hypodermal pigmentation, situated far forward; posterior oceili close to margins of eyes, front one on apex of prolonged vertex of the head. Mouth cone rather short, reaching only to middle of prosternum; maxillary palpi long and slender; sides of labrum straight, its point blunt. Antenna inserted below rertex, approximate at base, slightly more than one and one-half times as long as the head, quite slender; relative lengths of segments as follows:

$$
\begin{array}{cccccccc}
\frac{1}{7.5} & \frac{2}{13} & \frac{3}{18.2} & \frac{4}{17.8} & \frac{5}{13.6} & 6 & 12.1 & 11.6 \\
\hline
\end{array}
$$

Segments one and two concolorous with head: three pale yellow; rest of antenna shading gradually to dark brown at tip, except hases of four and five, which are pale yellow; spines and sense cones short and inconspicuous.

Prothorax smatl. scarcely two-thirds as long as head. One spine at earls posterior angle alone prominent: those at fore angles smatler than the anterior maremals: ali indistinet; midlaterals wanting: posterion marginals small and not visible exeept on lightest specinens with candulformsing. Pterothorax aproximately as wide as abolomen; its sides nearly stralight and parallel. Wings present; hind fringe of fore wing double for five or six hairs near tip. Lege long and sletider: fore coxa projecting strongly; fore femorat scarcely thickmer and tarsi unarmed; one spine nar hase of each femme below much lomger that others on lege and longest on fore femora; legs concolorous with body.

Abdomen long and slender, cylindriat to about seventh segment, about twiee as wide as head, from seventh segment taproring quite gradually to tube. 'Tube short, only one half as long as head; its sides straight and converging shightly; width at midalle aboat one-third width of heat; terminal hatrs about as long as tube. Spines at sides of ablomen slemder, pale, and not very prominent; segments usually overlapping consiterably; sides darkest in color.

Described from eight females.
Cotype.-Cat. No. 6336, U.S.N.M.
Male-Male about fire-sixths as lage as female, though antemma are of about vame size in both sexes: relative lengths of segments as follows:

$$
\begin{array}{cccccccc}
1 & 2 & 3 & t & 5 & 6 & 7 & 8 \\
8 & 12 & 16.5 & 16 & 13 & 12.5 & 11 & \frac{8}{8}
\end{array}
$$

Nhdomen much smaller than in female and tapering gradually from base to tip.

Desiribed from one specimen.
Fiond plant. (irape.
Mubitut.-Amherst, Massathusetts.

Genus IDOLOTHRIPS Haliday. ${ }^{*}$

Anterior ocellus remote from the base of the antema. Proboseis reaching the hase of the prosternum; labial palpi pappliform; vein one of the fore wings shortened by one-half or abberiated. Head very long, rounded; abdomen hoilowed out. Antemme slender, three or four times as long as the thom; prothorax mequally tuberenated; metatarsi marmed. Size large, marked with thee or more lines.

In this gemus I find only the species conifirarmen.

IDOLOTHRIPS CONIFERARUM Pergande.

$$
\text { Ilate } \mathcal{X} \text {, figs. } 10 \bar{i}-110 .
$$

Idolohrips comiferchom Pergixde, Entom. News, VII, 1896, pp. 63-64.
Idolothrips comiferarum Trybon, Festskrift för Lilljelırg, 1896, p. 218.

Frmale.-Length abont 4 mm. (3.34 to 4.26 mm.) ; breadth of mesothorax 0.55 mm . (0.50 to (0.6 (it) man.). (color coal-hack without markings.

Head long and erlindrical; proportional length more variable than in most pecies, hat areraging about two and one-third times ats long as wide; surface of head tramsersely finely striated; cheerks set with a momber of short, stont spines: head broadened a trifle jast before the neek-like constriction at the hase; vertex produced into a very prominent, conical homp in front of the eyes and orereaching the insertion of the antemme. Eye large, finely faceted, hulging slightly, extending as far around on moder side of head ats on upper: welli smatl, widely separated, the anterior one oreupying the extreme pertex; the posterior ones, nearly on a line with the middle of the eyes and dose to their margins, are often invisible, unless in faromble light, owing to the opacity of the head. Mouth cone shortand romeded. Antennae approximate at hase, inserted under the vertex, only about one and one-sixth times an long ats the head. and slender; relative lengths of segments ats follows:

1	2	3	4	5	6	7	8
$1 \because$	19	38	32	26	17.5	13.3	15

Segment one concealed at hase; three to five clavate: six to cight fusiform. Three mostly yellow (two-thirds): four nearly one-balf, and five about one-third yellow; rest of antemat brown-black. Spines and sense cones light and inconspicuous, but the cones espectally are long, slender, and acute; three apparently bears only one sense cone, and that is on onter side; six has but one, which is on inner side: four and five have four each.

Prothorax small, only about two-fifthe as long as head: only the one long spine on the outer angle of each fore coxa is at all conspienons. Pterothorax appars nearly square; sides straight and parallel; more than twice as wide as head. Wings present, hat short ats compared with great length of abdomen, not reaching beyond fifth or sixth segment, heavily fringed; hind fringe of fore wing double for about 26 hairs near tip. Legs short as compared with length of hody; fore femora but slightly thickened and tans armed with a tiny tooth; legs set with a mumber of quite long, slender, black ipines. Legs black, except fore tibie dark yellowish brown along middle of inside, and all tarsi dark brown.

Abdomen extremely long and slender, about two-thirds the length of the entire body and less than one-fourth as wide at base as it is long; tapers gradually from second segment to tube. Tube of female fully five-sixthe as long as head and a little more than one-thited the width of head; terminal hairs weak and only about two-thirds the length of the tube; spines on sides of abdomen short and weak.

Redescribed from four females.

Mal. - C'ontrary to the winal rufe, these two specinnens are longer than the females being 4.22 mm . (4.34 to 4.10 mm .). They are somewhat more stender. especially through the middle of abdomen. Heads about two and two-thirds times as long as wide; antenna longer than in femate, about one and one-fifth times as long as head; relative lengthe of segments ati follows:

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
14 & 20 & \frac{4}{2} & 34 & 29.5 & 21.5 & 14.5 & 15.5
\end{array}
$$

Prothorax mearly one-half as long as the head: fore femora considcrably thickemed (almost as broad as the lead) and eath fore tamsus bearing : an extromely stont tooth; fore tarsi and inside of tibiae yellow.

Ablomen at recond segment only two-eleronths as broad as long; fube thmo-fouths as long as head and rery slender.

Mate newly described from two specimens.
Fionel platers.- Pimes iops, Stmiperms rimpiminme, and Abices sp.
Found on either green or dry branches in spring and early fall and hibermating under bark.

Mrhbitut. Near Wrashington, District of Columhia; Amherst, Massachusetts.

UNCLASSIFIED HEN(RIPTIONS.

LIMOTHRIPS TRITICI (Fitch) Packard.

"The femates atone are winged, the males being wingless and closely resembling the larva. The body of the female is smooth and shining, uniformly greenish yellow, with no other markings; the legs are a little pater toward the articulations. The antemme are eight-jointed, slighty longer than the head; the two basal joints are the largest; the three succeeding joints equal, regularly ovate, the sixth a little longer than the fifth; seventh and eighth minute, seventh a little shorter than eighth, each joint bearing four large hristles. This species differs from the Enropean L. cemplimm in having but eight joints, the seventh and eighth heing mimute. and with no intemediate short one, as described in the Emropean insect.
"The prothor"ax is square, the scutellum short, crescent-shaped, and the abdomen is long and narrow, smooth and shining, ten-jointed. Length, four one-hundredths of an inch, or less than half a line.
"The larva (fig. 2) is cutirely greenish yellow. the head and prothorax of the same color as the rest of the hody. The eyes are reddish. The feet and antenne are whitish, not ammulated, as in L. cerulium. The feet (tarsi) consist of but a single joint ending in a point.
"The mate ditlers from the larva in having two jointed feet (tarsi) and seren-jointed antennar, those of the larva being four-jointed. The second joint is exactly harrel-shaped, with two ridges or lines surrounding it, third and fourth joints long, ovate, the third being a lit-
the larger than the fourth, and with about twelve transverse lines, there being about eight on the fourth joint, from the end of which projects a remarkable tuberele, as seen in the figure. The fifth joint is square at the end, with about eleven transverse lines, and three or four stout hairs externally; sixth joint minute and spherical, while the seventh is three times as long as the sixth, and is finely striated, and with four unequal stout hairs. It is just twice the length of the female, measuring 0.08 inch."

THRIPS TRIFASCIATUS Ashmead.

"Female.-Length 0.8 mm. Light brown: eyes strongly faceted, purplish-hrown in certain lights; three hasal segments of the abdomen above, dark brown; segments 4,5 , and 6 white; apical segments light brown, the sutures dusky; legs, except hind femora toward tips, white; wings linear, strongly fringed, without nerves, the ground color brown or fuscous, with three transverse white bands, i. e., the front wings have a white band at base, another at about two-thirds their length, and with the apices white.
" Inebitut.-Near Utica, Mississippi."

THRIPS SECTICORNIS Trybom.

I have been unable to see the description of this species which was published in Öfversigt af k. Vetenskaps-Akademiens. Förhandlingar, 1596 , page 620.

PHLEEOTHRIPS MALI Fitch.

"This insect measures only six-hundredths of an inch in length and one-hundredth in width. It is polished and shining, and of a blackish purple color. Its antennæ, which are rather longer than the head and composed of eight nearly equal joints, have the third joint of a white color. The abdomen is concave on its upper side, and is furnished with a conical tube at its tip which has a few bristles projecting from its apex. The wings when folded are linear, silvery-white, and as long as the abdomen; they are pressed closely upon the back, spreading asunder at their bases, and appear like an elongated Y-shaped mark. Viewed from above, the head is of a square form, longer than wide. The first segment of the thorax is well separated from the second, is broadest at its base, and gradually tapers to its anterior end, where it is as wide as the head. The following segment is the broadest part of the body and square, with its length and breadth equal."

PHLEEOTHRIPS CARYÆ Fitch.
"This insect is 0.07 long, of a deep black color and highly polished. Its head is narrower than the thorax and nearly square. The third, fourth, and fifth joints of the antenne are longer than the others, yellow, and slightly transparent; the last joint is shortest and but half as
Proc. N. M. vol. xxvi-02-14
thick as those which precede it. The abdomen is egg-shaped, with its tip drawn out into a tube thrice as long as it is thiek, with four long bristles at its end, and the abdomen is fornished with bristles at each of its sutures. The wings do not reach the tip of the abdomen. They are white and slightly tramparent and fringed with black hairs. In its larvastate it has more slender linear form with a dull greenish yellow head, a white thorax with a brom back band anteriorly, a pale red abdomen with a back hand at its tip, and whitish legs."

FOSSI, THYBANODTERA.

Tiny though they are, these insects are not unknown as fossils. The White River deposits are the only ones in this country from which they are yet known. Three species, representing as many genera, have been found there in Tertiary rocks, and have been described by Dr. S. H. Sculder (15t, 336), whose descriptions of these insects follow. The last two genera are extinct. Of the genus Melanothrips, no living representative has as yet been found in this country, though a species of this gemus is known in Europe.

MELANOTHRIPS EXTINCTA Scudder.

Melanothrips extincta Scumper, Bull. U. S. Geol. Geng. Surv. Terr., I, 1875, p. 221; Rept. T. S. Geol. Surv. Terr., X1II, 1890, p. 371.
"Head small, tapering; the only appendages visible are the antenna: these are only sufficiently presered to recognize that they are very long and slender, longer than the thorax. The thorax is rather small, quadrate; wings nearly as long as the body, fringed on the costal border as in Palaothrips fossilis. The abdomen is composed of only eight joints, but is very long and very tapering, fusiform, the last joint produced, as usual in the Physapods; the third joint is the broadest; of the wings only the costal border and a part of one of the longitudinal reins can be seen: there are no remains of legs.
"Length of hody. 2.2 mm.; of antenna, 0.5 mm. of head, $0.1+\mathrm{mm}$. of thorax, 0.5 mm .; of abdomen, 1.56 mm ; greatest breadth of abdomen, 0.5 mm .
"Chagrin Valley, White River, Colorado. One specimen, W. Denton."

Genus LITHADOTHRIPS Scudder.

> İithedotheips Scubner, Bull. U. S. Geol. (ieog. Surv. Terr., I, 1875, p. 221; Rept. U. S. Geol. Surv. Terr., XIII, 1890, p. 372.
"Allied to Melanothrips Haliday. The head is large, broad, globose; the eyes exceedingly large, globose, each occupying on a superior riew fully one-third of the head; the antemme very slender, equal, as long as the thorax, the joints cight or nine in number, cylindrical, equal, scarcely enlarging toward their tips. The prothorax is no
larger than the head, of efual breadth with it, the whok thorax shaped as in Palaeothrips. Only fragments of the wings remain, sufficient to render it probable that they agree well with the chanacter of the eroup to which Melanothrips and Eolothrips helong. The leg- resemble those of Pateothrips, hut are slender and appear to be ather profusely supplied with hairs. The abdomen differs considerably in the two specimens referred to this gems. In one it is very broadly fusiform, the tip a little produced, nine joints visible, the apical furnished with a few hairs, and blantly rounded at the tip; the other hats the sides equal, the apex not at all produced, but very broadly rounded, only seren or eight joint, vaguely definable.
"A single species is known."

LITHADOTHRIPS VETUSTA Scudder.

Lithatothriys vetustu Scldier, Bull. U. S. Geol. Geog. Surv. Terr., I, 1875, p. 222; Rept. U. S. (ieol. Surv. Terr., XIII, 1890, p. 372.
"The specimens, hoth of which represent the upper surface of the body with fragments and vague impressions of the members, are too poorly preserved to add anything to the above description of their generic features, excepting the following measurements:
"First apecimen.-Length of body 1.76 mm., of antennar 1.6 mm., of thorax 0.6 mm ., of abelomen 0.87 mm . : breadth of head 0.28 mm ., of thorax 0.52 mm., of abdomen 0.56 mm . ; length of fore femora, 1.37 mm. ?; breadth of same, 0.14 mm. ; length of hind femora, 0.42 mm.; breadth of same, 0.13 mm .
"Scoond specimen.-Length of body 1.96 mm., of antemme 1.76 mm. of thorax 0.56 mm ., of abdomen 1.10 mm .; breadth of head 0.35 mm ., of thorax 0.59 mm . of abdomen 0.59 mm .
"Fussil Canyon, White River, Utah. Two speeimens, W. Denton."

Genus PALAOTHRIPS Seudder.

Putaothrips A'cloner, Bull. U.S. (ienl. Geog. Surv. Terr., I, 1875, p. 222.
\cdots This genus is allied to Eolothrips Haliday. The head is small, glohose; eyes rounded, much smaller than in Lithadothrips; antenne slender, fully as long as the thorax, not more than seven jointed, the joints eylindrical, subequal. Prothorax considerably larger than the head, the thorax as a whole very large. stout, and tumid; fore femora very stont, scarcely more than twice as long as broad; fore tibia also stout, a little longer than the femora; the other legs are moderately stout, long, reaching beyond the tip of the abdomen, with a few scattered, rather short, spinons hairs: the hind tarsi three jointed, the last joint smaller than the others, and altogether two-serenths the length of the tibia. Fore wings umsually broad, broadest apicaliy, where their breadth more than equals one-fourth of their entire length, provided with two longitudinal veins, dividing the disk into three nearly
equal portions, romnected in the middle by a cross rein, and with either horder her other cross veins at about one-third and two-thirds of the distance from the base to the tip of the wing; the wing is heavily fringed, especially along the hind border. Hind wings veinless, nearly as long. and at the tip nearly as broad, as the fore wings. Abdomen nime jointed, half as long again as the thorax, rather tumid, searcely or not at all produced :pically."

PALEOTHRIPS FOSSILIS Scudder.

Prutathrips fussilis S'cudder, Bull. U. S. Geol. Geog. Surv. Terr., I, 1875, pp. 2e2-223.-Zitrel, Handl. d. Paleontology, I, Pt. 2, 1885, p. 784, fig. 999; Rept. U. S. (reol. Surs. Terr., XIII, 1890, pp. 373-374.
"Head small, tapering a little in front, where, however, it is broadly rounded. The antenne are certainly seven jointed, and none of the apical joints show any indication of heing connate, the last joint being of the same length as the two preceding it, tapering, and bluntly pointed; none of the joints show any enlargement in the middle, but the middle joints are slightly larger at the distal extremity than at the base; they appear to he destitute of hairs. The prothorax is subquadrate, a little broader than long. with rounded sides; the fore femora are unusually stout, as long as the width of the prothorax. The longitudinal veins of the fore wings approach each other somewhat abruptly in the middle, where they are united by a cross vein, and at the tip of the wing they curve away from each other; the two cross veins on the lower third of the wing are, respectively, slightly farther from the hase of the wing than the corresponding veins of the upper third; the fringe on the posterior border is largest near the tip of the wing, where the hairs are about three times as long as those on the costal border. The first hind tarsal joint is searcely longer than broad, eylindrical; the second of about the same length, hit decidedly broader at apex than at the base; the apical joint is nearly globular, smallest at base, as large in the middle as the base of the other joints. There are a few hairs at the tip of the abdomen and a few short ones on the hind tibie; the appical ones stouter than the others, resembling spines; but the insect appears to have been umusmally destitute of hairs, excepting on the wings, where not only the edges but also all the veins are fringed.

* Length of body 1.6 to 1.8 mm .; of antenmx 0.58 mm . ; of fore femora 0.32 mm : breadth of same 0.14 ; length of fore tibia 0.32 mm.; of hind femoral 0.38 mm ; breadth of same 0.11 mm . ; length of hind tibiae 0.42 mm ; of hind tarsi 0.12 mm . of fore wings 1.4 mm .; of hind wings 1.27 mm. ; greatest breadth of fore wings 0.37 mm .; length of prothorax 0.16 mm . breadth of same 0.32 mm . ; length of whole thorax 0.64 mm .; of abdomen 0.92 nmm. : greatest breadth of the same 0.37 mm .
"Fossil (anyon, White River, Utah. W. Denton."

GENERAL (ONSIDERATIONS.
As has been shown in Jordan's conclusion in regard to the systematic position of this group (sce p. 82). Thysanoterat have branched ofl from the line of the Orthoptera-Hemiptera and resmble the Homoptera more closely than they do any other group.

Starting with a given form which we may eall Prothysumpteron, I believe that changes in the degree of development of any of its organs must be correlated with changes in it hahits and enviromment. What was Prothystmopteron like! Judging from its line of phyllogeny, it must certainly have been an ative roming and flying insect, having elongated mouthparte which were probably becoming sinctorial in function and bearing near the other extremity of the body a saw-like ovipositor. Having these organs which would be concerned in the chief relations of its life to its enviromment-mutrition, locomotion, and reproluction-what can we infer as to the habits of that primitive insect? It fed externally upon the juicy parts of plants, prohably puncturing them with its elongated mouthparts and sucking up the exuding juices. It flew from flower to flower or tree and ram about actively thereupon. In the tissue of its food plants it deposited its eggs, cutting the necessary slits for them with its saw-like oripositor. Its legs, used chiefly in running or crawling, would present few, if any, modifications, while its wings, though surely slender, were probably broal as compared with those found in the order to-day, and the hairs which happened to stand along their edges had begun to elongate so as to compensate, in some degree, for the narrowness of the membranes. With such an insect and such habits as this hypothesis snggeste, if we can name reasonable changes in hahits which, acting in accordance with the laws of Nature as we know them to be acting to-day, will produce the various forms of insects whieh we now include in this order, we feel that our hypothesis can be as well sustained as any such hypothesis with reference to primitive forms is capable of being.

If some of the descendants of our external-feeding Prothysamopteron in their struggle for existence should, in the course of numerous generations, acquire a habit of feeding in some well-protected part of the plant. e. g., inside the closely rolled central leaves of Tucca filcmentrise, where they would be comparatively safe from the attacks of their enemies (a change of habit easily produced by matural selection), then, this enviromment heing farorable, they would no longer find as frequent or as urgent use for their wings and legs as had their ancestors, and they would be fayored by remaining in a very restricted place. As a result, wings would degenerate from disuse, and the movements of the insects upon their feet wonld become slower. Wings might, and probably would, he a distinct disadrantage in such a restricted babitat, so that many influences would tend toward their refluction,
which, howerra, could not be complete without entailing a decided disadvantage to the species hy hindering its spread to other food plants. Nature has established her line of equilibrium somewhere between the two extremes, and we have a majority of short-winged individuals favored hy the absence of long wings, hut yet in nearly every species will be preserved in some sex, generation, or individuals fully dereloped wings to assist in the spreading of the species. This line of "halance" will be atlected by nearly every habit of the species, so that we may mamally experet to find it in diflerent places in species having diflerent habits, and such is indeed the ease. (See p. 10.s.)

Such a rhange of hathit from frequenting an exposed to a protected ferding ground would affect other organs than the wings. There would no longer he any need of embedding the eggs for protection, and should the atmosphere prove sulticiently moist, they would undoubtedly derelop though laid upon the surface of the leaf or stem. This would save much of the conergy of oviposition, and in the course of time the practice of cmbedding the eges would cease altogether. Having now no use for the ovipositor, that, too, would degenerate from disuse till. at most, a mere restige would remain of this originally well-developed organ. Some such comrse of development I believe to have taken place in the Phloothripida, and the chitinous rod now found on the underside of the ninth abdominal segment just in front of the sexual opening secms best explainable as the remaning vestige of the former ovipositor. (Ser Plate X, fig. 115.) As the oripositor became weaker and weaker other changes correlated to this most have been in progress. The sheath which had eontained the ovipositor, being no longer needed, would naturally berome closed up. The ventral plates which had previously disappeared to provide room for the sheath would not again develop, hut the edges of the dorsal plates closing around still further would meet on the ventral line forming the tube of the Tubulifera. At the same time the sexual opening seems to have moved hackward till it reached the hind part of the ninth segment, where it is now fommd.

Other modifications of the Prothysanopteron, found in the Tubuliferat (mainly), may logically be traced to this one change of habit. I refer to the trapezoidal form of the prothorax, the enlargement of the fore legs, and the derelopment of a tooth upon the fore tarsus which thereby has lost one segment in a large number of forms, also the Hattened chatacter of the body, and possibly its elongation.

In regard to the modifications of the prothorax and the fore pair of legs, it is very evident that they may all be related to the one simple change of habit in regard to the place of feeding, which has been assumed. Naturally consideralle effort would frequently, perhaps nsually, be required to drag their bodies through such narrow places ats those in which they lived. Any variation in the line of a more
powerful development of the muscles of the fore legs or of any modification of the tarsus which would tend to give a firmer hold in crawling, being favorable to the insect, would be preserved by natural selection, and thas in the course of many generations the tarsal tooth and the powerful, thickened femora of most Tubulifera would be developed. There would also he a correlative hoadening and llattening of the prothorax, which would necessarily result in pushing farther apart the fore coxae, which are attached to its hind angles. The logical result of these changes is the trapezoidal form of the prothorax always found in those species having such thickened femora and well-developed tarsal hooks.

The elongation and flattening of the hody are doubtless referable in some degree to the same change in the conditions of external life, for such a changed form would certainly have been farorable to its possessors, and we are surely safe in assming that the favorable changes are the ones which have been preserved, while the unfavorable ones have been eliminated. We do not presume to say that all the descendants of Prothysanopteron followed this suggested line of change; some of them certainly may have done so. Neither do we presume that all the descendants of those which did follow some such line of development would continue in an even similar enviromment till all the modifications which have been named had been aceomplished. We have jnst as much reason to expect a change of emviroment anywhere along the phyllogenetic line as at its begimning, and such changes certainly must have taken place. What would be the result if this were the case? Different environments acting upon different subjects, or even upon like subjects, would favor entirely ditlerent variations. Structures which had become dereloped during the changes subsequent to Prothysanopteron might be lost, but those that had been lost could never again he developed in their original form; e. g., tarsal teeth and thickened femora might develop and then disappear, but an ovipositor of the original type would never again be found in the Tubulifera. We would expect then that the descendants of Protubuliferan wonld vary in habit., habitat, form, and life rather than in the tubular nature of the terminal segment of the body. Sueh is indeed the case, and so while there do take place great modifications of each organ, the presence of the tube is constant. We feel justified in concluding that the family Phleothripida has now diverged far more widely from Prothysanopteron than has either of the families of the Terebrantia.

The two families constituting the suborder Terebrantia resemble each other quite elosely in many respects. We find between them no such marked points of difference as we do between each of them and the Phloothripida. The principal differences which do exist are mainly vatious modifications of the same organ, and the most impor-
tant structures which we must notice are the antenne, wings, and ovipositor. What are the chief points of difference that we find in the structure of these organs! Only a moditication in the structure of cach organ has taken place. In Eolothripida we find always nine segmented antenme, comparatively broad wings, which are rounded at their extremities, and have, in the fore wing, the fore fringe and the spines along its veins very weakly developed, a strong ring vein, two longitudinal reins, and four or five cross veins, and tinally a strongly developed oripositor, which curves upward toward the tip of the abdomen. In Thripida we find antenne with from six to eight segments, wings which are nearly always slender and quite sharply pointed at their tips; that in the fore wing the fore fringe and mmerous spines along its reins are nearly always well developed, two (sometimes only one) longitudinal veins are present, the ring vein is rarely strongly developed, cross veins are absent or but slight traces of them occasionally appear, the ovipositor is moderately well developed in most cases, but sometimes is small, weak, and functionless, though it is always plainly present and curves downward away from the tip of the abdomen.

Between these two families we shall find it much more diffieult to decide just what influences may hare favored the development of the differences noted. Certainly many influences were concerned, and they could not have been of such a nature as to favor such radical changes as have resulted in the development of the Tubulifera. Rather than attempt to outline these varied influences and their probable results, we prefer, in this case, to base our conelusions upon the general tendencies which now appear to be acting, and which we may reasonably assume to have been acting in the same way during much, perhaps all, of the past history of this suborder.

We have shown that Phloothripida have diverged more widely from Prothysanopteron than have any other members of the order. A comparison of the antemma in the three families will aid us in determining the order in which the families must be arranged. In the Phloothripidse these organs are always eight segmented. The intermediate segments are, as a rule, much thicker in the middle than at the ends, and are sometimes rounded. Stout spines are borne around the apical thirds of segments two to six, inclusive, and more slender spines are more generally distributed over the last two segments. A whorl of small spines stands also around the first third of each segment from three to six, inclusive, and simple, stont, specialized sense cones are borne at about the outer third of these segments in most cases. The antenna of Thripida consist of from six to eight segments, of which the intermediate ones are always considerably thicker in the middle than at their ends. Stout spines are usually present around the apical ends of segments two to five inclusive. More slender spmes
are generally distributed over segments six, seven, and cight, and from three to five whorls of small spines are often diseernible around the middle half of each intermediate segment. Sense cones are found upon segments three to six, inclusive; in some cases these are all simple, though in the majority those upon segments three and four are double or crescentic in form. The antenna of Eolothripide have always nine segments, of which the intermediate ones are always much elongated and regularly eylindrieal in form. Stout spines are found only around segment two, while the remaining segments, except the hasal, are thickly set with small mines, which are irregularly, but generally distributed. Of these last two types of antema, that of Thripide unquestionahly approaches more closely to that of Phleothripida. Granting that the latter exhibits the extreme degree of divergence from the original type, we must place Thripide next, and this leaves the antenna of Folothripidae as resembling most closely that of Prothysamopteron.

If we examine the wings in like mamer, we shall find that both pairs of those of Phleothripide are similar in form, long, slenter, and romded at their ends. Ring vein and cross veins have entirely disappeared. Eateh wing has only one longitudinal vein, which is median and though quite strong at its base usually disappears hefore the middle of the wing. The fringes upon hoth margins are equally well developed and quite similar in all respects. The membrame of the wing is smooth and the veins are not set with spines except for about three, which usually stand near the base of the vein in the fore wing. Thripide have wings which differ in many regards from those of Phlœothripide just described. The fore and hind wings are dissimilar in many respects. They are both, however, long, very slender (except the fore wing of P'artlienothrips), and sharply pointed at the tips. The fore wing is always some what stronger tham the hind wing and has more veins and hetwier fringes. There are usmally present in it two fully developed longitudinal veins (sometimes only one), and these disappear before reaching the end of the wing. The ring rein, though very strong in the one species of Parthenothrips, is weakly dereloped in most species and in some is hardly distinguishatbe. Traces of eross reins can sometimes be seen, but they are never strongly developed except the one between the two longitudinal reins at the first third of the wing. While entirely absent (with the exception mamed as strongly developed) in most species, there may oceasionally appear individuals having wings which show traces of cross veins, and it is rery significant that these always oceur at just the same positions in the wing as are occupied by the cross reins of . Eolothripida, which will be more fully described in comection with that family. The hind wing has one longitudinal rein which is median, but no ring or cross veins are present. Fringes usually occur upon
both margins of both wings, but are different upon the two margins, the for fringe being single, shorter, and usually stouter than the hind one. The veins of the fore wing alone bear more or less strongly dereloped upines which upou the costa may eren take the place of the fringe. The membranes of both wings are thickly set with very mimute, microseopie spines. In Eolothripida we find wings which are long, comparatively broad, and rounded at their extremities. Here also the fore and hind wings are dissimilar in many respects, the fore wing heing stronger and far more heavily veined. The fore wing has always a strongly developed ring rein." two longitudinal reins which extend thronghout the wing and unite with the ring rein on each side of the tip, and fom or five well-developed cross reins situated ats described on p. 129. The hind wings have no fulty developed longitudinal vein and no trace of cross or ring veins. No fringe is developed on the front margin of the fore wing and only a rery short, weak fringe is here present upon the hind wing. The reins of the fore wing hear only short spines and the membranes of both wings are thickly set with small spines which, though minnte, are larger than the similar spines in Thripida.

Comparing now these three types of wing point hy point, and hatancing the weight of evidence, wa are led to the conclusion that Eolothripide and Phleothripides stand at the extremes in respect also to their wings, with Thripida somewhere betwern them but nearer to the former than to the latter group. The strong, constantly developed ring vein of Eolothripida has become much weaker or entirely disappeared among Thripidx, while in the widely divergent Phbothripidae no trater of it is found. (ross veins are also disappearing in Thripida, and their occasional presence in mush the same position in the wing ats in Eolothripida suggents the idea that they are mondergoing degeneration and that this process has gone farther in some species than in others. In Eolothripidae the longitudinal veins join the ring rein near the tip, in Thripidar they do not reach this point but taper out and dixappear before the tip, while in Phleothripidae they rarely reach heyond the middle of the wing. The microseopie spines upon the mombranes and the comparative development of the fore fringes hoth point to this same relation of the families. ln only one chamater do the wings of the extreme groups closely resemble aach other- this is in the broadty rounded tips. The Phleothripida being, as we have seen, the most widely divergent group, we must conclude that, so far ats wings are concerned, those of Eolothripida resemble most closely the wings of Prothysanopteron.

In regarl to the oripositor lont little will need to be said. "It is always fomed more strongly developed in Eolothripida than in Thrip-

[^7]ida, while in Phboothripida it is entirely wanting. Moreover, there exists in Thripida a wide variation in the degree of its development, as has already been shown. So in this respect, also, we must place our three families in the same relation to cach other, and if Prothysamopteron possessed an ovipositor, as we can not doubt from its phyllogeny must have been the case, the well-developed organ found in Eolothripide must very probably approath most alosely to the primitive form.
Summarizing the conclusions which we have now reached, we find, first, that the Tubulifera (Phloothripida) have diverged more widely from Prothysamopteron than have either of the families of the Terebrantia. Second, a comparative consideration of antenne, wings, and ovipositor shows that Eolothripide and Phleothripide present the extreme types of these structures found in the order. Therefore we conclude that the Eolothripida most nearly preserve the chanacters present in the Prothysamopteron ancestor of this order. From this it appear's that the descendants of Prothysamopteron early divided into two main groups, one of which diverged widely from the original form and has developed the Tubulifera of to-day. The other of these groups continued nearly along the original line, hat in time it divided again and a group (Thripidae) branched off, taking in some respeets the direction of Phleothripidae, while in the majority of characters it followed a line of it, own. The group which still continued most nearly in the original direction includes the insect, which we now phace in the fanily Eolothripida.

BIBLIOGRAPHY.a

* 1. Bonanni, Ph., Micrographia Curiosa, 1691, pp. 52, 53, fig. 38.
* 2. de Geer, C., Abhandl. d. Schwed. Akad., VI, 174t, pp. 3-9; Vetensk. Acall. Handl., V, 1744, pp. 1-9, pl. 1, fig. 4; Deutseh Uebers, VI, pp. 3-9, fig.; Latein Analecta Transalpina, I, 1751, pp. 277-281.

3. Linnecs, C., Systema Nature, 4th ed., 1744, p. 93.

* 4. Linnees, C., Fauna Svecica, 1746, p. 220.

5. Linnees, C., Syst. Nat., 10th ed., I, 1758, p. 457; 12th edl., I, Pt. 2, 1767, P. 748; 13th ed., I., Pt. 2, 1767, p. 743.
6. Linneves C., Fauna Svecica, 1761, pp. 266, 267.
7. Sulzer, J. H., Die Kennzeichen d. Insecten, 1761, pp. 883-85.
8. Scopolı, J. A., Entomologia Carniolica, 1763, p. 141.

* 9. Gleichen, F. F. W., Das neueste ans dem Reiche der Phanzen, 176t, pp. 13, $14, \mathrm{pl}$. xyi, figs. 6, 7.
*10. Geoffroy, E. L., Histoire abrégée des Insectes, I, 1764, pp. 383-386, pl. vin, fig. 6.

11. de Geer, C., Mémoires pour servir, à l'Histoire des Insectes, III, 1773, pp. 1-18, pl. 1, figs. 1-13.
12. Fabricies, J. C., Syst. Entomologie, 1775, p. 745.
13. Müller, O. F., Zoologiæe danice Predromus, 1776, 1. 96.
14. Fabricics, J. C., Genera Insectormm, 1776, pp. 304-305.
*15. S'lzer, J. II., Ahgekürzte Geschichte der Insecten, 1776, p. 112.
*16. Schrank, F., Schrank Beitrige, 1776, pp. 31-33, fig.
*17. Goeze, J. A. E., Entomologische Beyträge, 2d ed., 1777, pp. 34f-351.
*18. Schïffer, J. Ch., Elementa Entomologica, 31 ed., 1780, p. 127.
*19. Goeze, J. A. E., Abhandl. z. Geschichte d. Insecten, III, 1750, pp. 1-11.
*20. Schrank F., Enumer. Insectorum Austrie indigenorum, 1781, 1. 297.
15. Fabricius, J. C., Species Insectorum, II, 1781, pp. 396, 397.
16. Barbut, J., Les Genres des Insectes de Limé, 1781, Pp. 157-159, pl. ix.
17. Fabricies, J. C., Mantissa Insectorm, II, 1781, p. 320.
18. Martyn, IV. F., A New Dictionary of Natural History, 1785.
19. Gmelin, J. F., Caroli, a'Linné Syst. Nature, 13th ed., I, Pt. 4, 1788, pp. 22222224.
*26. de Yillers, C., Caroli Linnei Eutomologia, I, 1789, p1'. 564-567.
*27. Berkenhout, J., Synopsis Nat. Hist. of Gt. Britain and Ireland, 1789, pp. 12丷, 123.
*28. B.ierkander, C., Vetensk. Acad. nya. Handl., XI, 1790, pp. 226-229; Deutsch Uebers., II, 1792, pp. 213-216.
20. -_ A new Syst. of Nat. Hist., III, 1792, p. 447.
21. Fabricius, J. C., Entomol. Systematica, IV, 1794, pp. 298, 229.
22. Marsham, T., Trans. Linn. Soc. Lond., III, 1797, pp. 2t2-251, pl. 1.
23. Kirby, Wm., Trans. Linn. Soc. Lond., III, 1797, pp. 246-249.
24. Markwice, W., Trans. Limn. Soc. Lond., III, 1797, p. 246.
25. Marsham, T., Trans. Limn. Soc. Lond., IV, 1798, pp. 224-229.
26. Kirby, Wm., Trans. Limn. Soc. Lond., [Y, 1798, pp. 230-239.
27. Bučmanbac'm, J. F., Handb. 1. Naturgeschichte, 6th ed., 1799, 1. 344.
*37. N'tewnet, Elements of Nat. Ilist., II, 1802, p. 114.
28. Finamous, J. (., Systema Rhyngotormm, 1803 , pp, 312-314.
:89. Bembteln and hicumpenberi, Naturgesch. (l. Schädl. Fortinsekten, 1804, Pt. 1 , 11. $290-292$.
29. Pingeri, (i. W. F., Schateferi Icommon hasectorum, new ed., 1804, p. 213, pl. ($11, \mathrm{XX}, \mathrm{fig} .4, \mathrm{a}, \mathrm{b}$.
30. Turoon, Wh., A General Aystem of Nature, (Transl. from Cimelin's ed. of Syst. Nat.), II, 1806, P户. 8, 716-717.
*42. SHAw, (i., (ieneral Zoology, VI, 1806, p. 19s), pl. Lxint.
31. Lathelleb, I. A., (ienera Crustacerum et Insectormm, 11I, 1806, pl. 170-172.
*4. Duméril, C., Zoologie analytique on Méthode qat. de Classific. des Animaux, 1806, Pp. $261,268,269$.
*45. Yasishle E.indi, A. M., Mem. Acad. Torin, XVI, 1809, 1. 76.
32. Fallex, ('. F., Spec. nov. Ilemiptera, 1814, pp. 3-24.
33. Lescol, W. K., Amer. ed., New Edinburgh Encyclopaedia, VHI, 1816, 1). 715.
34. Simouelle, (i., Entomologists Compendium, 1819, p. 232, pl. v, fig. 12.
*49. Wood, Wm. Illustrations of Linn. Genera of Insects, 1831.
35. Latrenlle, l'. A., Fam. nat. dn Regne Animal, 1825, p. 429.
36. Nтark, J., Elements of Natural History, II, 1828, p. 326.
*52. Lowell, J., Mass. Agri. Repos. and Journ., X, 182s, Pp. 156-159.
37. Atrats-Drerknetm, Consid. ('énérales sur l'Anat. Comp. łes Animaux Artirulés, 1828.
38. Latrehlie, P. A., Cuvier, ilegne Animal, ed ed., V, 1829, p. 2̈26.
39. Maor, J., Treatisc on Insects, 1829 , 1p. $87-90$.
40. Sterens, J. F., A Systematic ('atalogne of lirit. Ins., II, 1829, 1. B6i.).
41. Mcllurtkie, H., Cuvier's Animal Kingetom, Translated, IV, 1831, 1. 49.
*58. Boucné, I'. F., Naturgesch. 1. schä̈dl. n. nützl. Crarten-Insecten, 183:3, P. 42.
42. Boucué, P. F., Naturgesel. 1. Inserten, 1834, pp. 206-207.
*60. Passerivi, (!., Atti Acad. (reorgof., XII, 18:34, p. 7; Xlll, 18:35, 1). 10; Revue Kool., $1 \mathrm{~V}, 1841$, 1. 29; V , 1842, p. 368.
43. Newmin, E., Entomologieal Magazine, II, 1835, 11). 379, 426.
44. Deshay amd Enwaros, Lamarek's listoire nat. d. Animatux sans Vertebres, 24 ed. I ${ }^{+}, 1835, ~ p p . ~ 122,123 . ~$
45. Halibis, A. H., Entomological Magazine, 111, 1836, pp. 439-451.
46. Latrenle, P. A., Cmvier, Regne Animal, 3́l erl., IlI., 1836, 1. 138.
47. Halid.jx, A. H., Entomol. Magazine, IV, 1837, Pp. 144-146.
*66. ERMmon, WT. F., Archiv f. Natürgevel., III, Pt. 2, 1837, 1. 332.
48. Chrtis, J., Gnide to Arangement of Brit. Ins., 2ll el., 18:37, pu. 2, 19, $2: 20$.
*68. DAmbon, (i., Kort muterrättelse om Skandinaviska Insekters almämnare Skada weh Nytta, 1837, ए. 149.
49. Burmelster, H., Hamll. (J. Entomologie, II, 1838, M. 404-418.
50. Curtis, J., British Entomology, X VI, 18:39, p. 748, pl.
*71. Burmeister, 11., (ienera Insectorum, 18:39.
51. Salacroux, New Éléments d’llistoire Naturelle, II, 1839, 1. 208.
52. Volgt, F. S., Cuvier, Das Thierreich, V, 1839, p. 399.
*74. Derour, L., Ann. Scienc. natur., 2t ser., Zool., XI, 1839, p1. 321-324.
53. Westwoon, J. O., Introl. to Modern Classifice of Insects, I, 1839, PP. 45, 46; II, 1840 , pp. 1-5, fig. 57.
54. Swainson and Shuckard, Ilistory and Natural Arrangement of Insects, 1840, pp. 111, 114, 145-146.
55. Zetterstedt, W., Insecta lapponica descripta, 1840, Pp. 312, 313.
*78. Erichson, W. F., Archiv f. Natürgesch., V'I, Pt. 2, 1840, p. 324.
*79. Harris, T. W'., Rep't Ins, uf Mass., in Rep't 'Vool. and Bot. Surv. Mass., 1841.

80．Marms，T．Wr．，Rep＇t Ins．Mass．Inj．to Vegetation，lst el．，1841，pp．18，187， 444 ；reprinted as Treatise on Ins．1nj．to Veget．，2ll el．，1852，pp．20，234，235： id ed．， 1862 ；new ed．hy Flint， 1883.
S1．Curtis，J．，（iard．Chron．，April，1841，〕．228，fig．，pp．521，569， 782.
82．Marris，T．W．，Hovey＇s Mag．of Hort．，V liI，1842，1יp，247，248．
＊83．Tambuman，F．，Memoir sur le Thrips olivarius（Thrips de l＇olivier）et sur les moynes de prevenir les ravages de cet lnsect，VII，184：，p． 4.
84．（iverin－Meneville，F．F．，I omographie da Regne Animal de（i．Cuvier（dated 1829－1838），11I，1843，1ю．377，378，11．59，higs 13， 14.
85．Amyot and semville，Ilist．nat．d．Ins．Hemipteres，p． 9 and Appendice， 1843 ， 111． $637-646$.
86．Curtis，J．，Ciaml．（＇hmon．，1846，1． 564.

88．Dohrn and Btelow，Stett．Ent．Zeit．，VIII，1847，pp．37t－381．
＊89．Schaum，H．，Archiv f．Natürgesch．，IV＇，Pt．2，1849，1． 315.
90．—，Cuvior，Reque Animal，ed．by Masson，Texte，II，1849？，P1，7I，72；Atlas II，pl．xCiN bis，fig． 3.
＊91．Blane＇ilard，E．，Zoologia，VI，1851，pp．143－152．
92．Leunis，J．，Schul－N゙aturgeschiehte，Pt．1，Zool．，18．51，pI．203－205．
93．Heener，F．，Sitzmnesi！．1．math．－naturw．Class d．kais Akadenn．1．wiss．，V＇III， $1852,11.12-144$ ，pl．x；IX，1852，11）． $473-490$ ，pl．vi．
94．Ilabidiy，Walker，List Hommpterous Ins．in Coll．of Brit．Mus．，Pt．4，1852， pp．109t－1118，pls．Vi，vit，vil．
＊95．IIeeger，F．，Proc．Vienna Arad．，IX， 1852.
＊96．Dahlbon，（i．，Trans．Roy．Acad．Sweden， 1852 ？
＊97．Schatm，H．，Archiv f．Natürgesch．，XIX，Pt．2，1853，p．285．
98．Westwoon，J．（）．，Proe．Ent．Soc．Lond．，1858，p． 78.

100．Fitcu，A．，Trans．N．Y．St．Agr＇l Gor．，XIV，185t，plo．s06－80s．
＊101．Bremi－W゚olf，J．J．，Ahhandl．r．Kurich（iartenhau－（iesell．，1II，18．54，pp． 260－261．
＊102．Normbinger，H．，Die kleiner Feimde der Landwirtschaft，1855．
103．Higen，II．A．，Stett．Ent．Zeit．，XVI，185í，p．312．
104．Bremi－Wolf，J．J．，Stett．Ent．Zeit．，NVI，1855，pp．31：－315．
105．Fitcir，A．，Count．（ient．，VI，Dee．13，185̃̃，p． 385.
106．Fitcin，A．，Trans．N．Y．St．Agr＇l Soc．，1856；First Rep＇t on Jus．of N．Y．，1856， PP． $102-104$ ．
107．Yan her Hoeven，J．，Ilandlook of Zoology，I，1856，p．46t．
103．Newnan，E．，Trans．Ent．Soc．Lond．，2d ser．，I II，1856，11，26t－267．
109．Fitcı，A．，Ann．Rep’t N．Y．St．Aør＇］Soce．，1857，11］．536－541；Second Rep＇t Nox．Ins．of N．Y．，1857，1P．304－309．
＊110．Gerstaecker，C．F．A．，Archiv f．Naturgesch．，XXIII，Pt．2，1857，1． 383.
111．Kirby and Spence，Introd．to Entom．，ed．？，1857，Pp．67，93，114；7th ed．， 1858.
112．Hinn，H．Y．，Essay on Ins．and Diseases Inj．to W＇heat（＇rops，1857，pp．105， 106.
＊113．Reciel，E．，Bull．plys．math．Acad．St．I＇eterslurg，XVI，185s，Pl＇333－336； Melang hiolog．，II，I＇t．6，Pp．628－633．
114．Carpenter，W．B．，Zoolugie，II，1858，pp．152－153，fig．102．
＊115．Wentwoon，J．O．，Cuvier＇s Animal Kingdom，Insecta，1859，p． 571.
116．WAlker，Fr．，Amm．and Mag．Nat．Hist．， $3 d$ ser．，XXIII，1859，p．22t．
117．Curtis，J．，Farm Insects，1860，pp．285－289，fig．38；pl．J，figs．8，9；pl．o，figs． $13-17$, 11． $431,432$.
＊118．Koleviti，F．A．，W＇ien．Ent．Monatschrift，IV，1860，Pp．381－394．
119．Osten－Sacken，Stett．Ent．Zeit．，XXII，1861，p． 421.
120．DARWin，C．，Journ．Limn．Soc．Bot．，VI，1861，pp．84， 86.

121．Döncer，Handl．d．Zoologie，1＇t．2，1862，Pp．239－241．
122．Ostex－SAcken，Diptera of North America，1862，p． 201.
123．W゙．1nsi，B．D．，Proce．Ent．Soc．Phila．，I，1862，p． 310.
124．（inintiecker and Carcs，Ham（l）．（d．Zoologie，H，1863，pp．64， 65.
＊125．Darmin，C．，Amm．des Sci．Nat．Bot．，th ser．，NIX，1863，pr．204－229．
126．（inmbl，（C．（i．，Die Naturgesch．des Thierreichs，IV，1863，pp．327－328．
127．Whsit，B．D．，Proc．Ent．Noe．Phila．，MI，1864，Pp．609，611－612．
＊128．Tiscuenberi，E．L．，Naturgesth．d．wirbellosen Thiere，1865，pp．195－197， pl．15，tig．23．
129．Winnt，B．D．，l＇ractical Entomologist，1，1865，p． 21.
130．Wifixer，R．，stett．Ent．Zeit．，XXVII，1866，p． 67.
131．Deyrolle，E．，Annales de la Soe．Ent．de France，4th ser．，VI，1866，Bulletin， p．Fiv．
132．W．lliti，B．D．，Pract．Entomol．，I1，1867，pp．19，49－51．
133．Scudder，S．H．，Proc．Bost．Soe．Nat．Hist．，XI，1867，p． 117.
＊134．Löw，F．，Verhandl．1．k．k．Zool．－Bot．Gesellsch．，XVH，1867，p． 747.
＊135．yon Friuexfeli），（i．R．，Verhandl．d．k．k．Zool．－Bot．（iesellsch．，X VII，1867， PP．793－801．
136．Bonsiuval，J．A．，Ent．Hortic．，1867，pp．231－235，fig．32．
137．Sewner，S．II．，Geological Magazine，V，1868，p． 221.
138．Hexley，T．H．，Introd，to Classif．of Animals，1869，p． 122.
139．Packari，A．S．，Guide to Study of Ins．，1st ed．，1869，1p．547－550．
140．Walmit－Riley，Amer．Entomol．，I，1869，p． 227.
＊141．Conis，Ferd．，Unters．über Insecktenschaden auf den schlesischen Getreide－ feldern im Sonmer 1869， 1869.
142．Rolv，T．J．，Ent．Monthly Magazine，V1，1869－1870，1． 171.
143．Pickird，A．S．， 17 thi Amm．Rep＇t Mass．Bd．Agric．，1870，p．263，pl．i，fig． 2.
$143^{\prime \prime}$. Riley，C．V．，Setond Mo．Rep＇t， 1870 ，p． 6.
144．Riley，C．V．，Amer．Entomol．，II，1870，pp．134， 135.
145．（Goodrich，A．J．，Johnson＇s Nat．Hist．，II，1870，p． 593.
146．Cornelius，C．，Stett．Ent．Zeit．，XXX゙1，1870，pp．325， 326.
147．Müller，A．，Trans．Ent．Soc．Lond．，Proc．，1871，p．xl．
148．Riley，C．V．，Third Rep＇t Ins．Missouri，1871，p． 29.
＊149．de Max，J．（i．，Tijlsehrift v．Entomol．，XIS， 1871 （2 ser． 6 D．），p． 147.
150．（ilover，T．，Rep＇t Dep＇t Agric．for 1871，1872，pp．86， 87 ，fig． 21 ．
＊151．Beling，T．，Yerhandl．k．k．Zool．－Bot．（Gesellsch．，XXII，1872，pp．651－654．
152．Packamd，A．S．，Seventeenth Amm．Rep＇t Sec＇y Mass．Bol．Agrie．for 1871， 1872，pp．333－336， 2 figs；Seconl Ann．Rep＇t Ins．Mass．，1872，pp．5－8， 2 figs．
153．Müller，A．，Ent．Monthly Magazine，IX，1872，ply．13－14．
154．Figuler，The Insect World，revised by Duncan，1872，pp．400－401，figs．381， 382.
155．Bennett，A．W．，Nature，V＇lli，1873，pp．49－50， 143.
156．Kitchner，Nature，VIII，1873，p． 143.
157．Hakt，W．E．，Nature，VIII，1873，pp．244－245．
158．Holmgren，A．E．，Om âkerns sehadligaste insekter，1873，pp．55，56，fig． 26.
159．Riley，C．V．，5th Rep＇t Ins．of Missouri，1873，pp．16， 118.
160．Tiscnexberg，E．L．，Naturgesth．der dem Gartenbau schädlichsten Insekten， 1874，pp．409－420．
161．Wood，Insects Abroad， 1874 ，pp．347－349，fig． 172.
162．Kaltenbach，J．H．，Die Pflanzenfeinde aus cler Classe Insekten，1874，pp．42， $70,103,148,216,275,290,313,405,412,425,497,501,519,706,743,744$.
163．Соок，A．J．，3rl Ann．Rep＇t Pom．Soc．Mich．，1874，p． 501.
164．Líbвоск，J．．Origin and Metamorphosis of Insects， 2 l ed．，1874，pp．3－6，pl．3， fig．9，pl．4，fig． 9.
165．Riley，C．V．，6th Rep＇t Ins．of Missouri，1874，pp．50－51，fig． 9.
166. Betinne, C. J. S., 5th Rep't Ent. Soc. Ontario, 1875, p. 60.
167. (ilover, T., Rep’t U. S. Commissioner of Agric. for 1874, 1875, pp. 14-145.
168. Tenvey, Elements of Zoology, 1875, p. 331.
*169. Witтmack, L., Zeitseh. des landwirtschaftlichen Central vereins der Provinz Sachsen, XXXII, 1875.
170. Constock, J. H., Syllabus of Course of Lectures delivered at Cornell Univ., 1875, ए. 120.
*171. Schöyen, W. M., De for Ager, Engoch Have skadligste Insekter og Simakryb, 1875.
172. Pagenstecher, II. A., Agemeine Zoologie, Pt. 1, 1875, 1. 14.
173. Oustalet, Bull. de la Soc. Philomatique de Paris, 1875.
174. Scumber, S. II., Bull. U. S. Geol. Geng. Surv. of Terr., 1, 1875, pp. 291-29.3.
175. Domes, A., Zeitsch. f. wiss. Zool., XXVI, 1876, p. 121.
176. Clats, C., Grundzüge der Zoologie, :3d ed., I, 1876, pp. (644-645.

178. Butler, A. G., Ann. and Mag. Nat. Ilist., th ser., X'HI, 1876, no. 107; XVIII, 1876, p. 412.
179. Macalister, A., Introd. to Animal Morphology anil Syst. Zool., Pt. 1, 1876, P. 402.
*180. Farwick, Verhandl. d. naturh. Vereins d. preuss Rheinlande und Westfalens, thh ser., IV 1877, p. 57.
*181. Becker, G., Verhandl. d. Vereins d. preuss. Rheinlande u. Westfalens, th ser., I', 1877, pp. 168, 169.
*182. Körsicke, Verhand. d. naturh. Vereins d. prenss. Rheinlande u. Westfatens, 4th ser., IV, 1877, p. 330.
 568 , two figs.
*184. Dimitriewicz, N., Osterreiches landwirtschattl. Wochenblatt, III, 1877, No. 46.
*185. Ladureate, A., Ass'n Francaise pour l'avancement des sciences, Comte rendu de la 6 session, 1877, pp. 951-964.
186. P'ackard, A. S., Amm. Rep't U. S. Geol. Geog. Surv. Terr. for 1875, 1877, pp. 742-74t, pl. LxYn, figs. 3-5.
187. Targioni-Tozzetti, Annali di Agricultura, I, 1878, p. 13.
*188. Rothscinld, Musée Entomol., Les Insects, 1878, pp. 53-57, figs. 36, 37.
189. Bobretzey, N., Zeit. f. Wiss. Zool., XXNI, 18-8, p. 202.
*190. Reuter, O. M., Öfv. Fin. Soc., XXI, 1879, pp. 207-223.
191. Packard, A. S., Zool. for students and general reatlers, 1879, p. 370.
192. Butler, A. G., Philos. Trans. Roy. Soc. Lond., CLX̌1II, 1879, pp. $552-5533$, 11. Li', fig. 7.
*193. Ladurear, A., Etude sur la malidie dite brûlure du lin, 1879.
*194. von Szaniszló, A., Verhanidl. d. k. k. Zool.-bot. Gesellsch, XXIX, 1879, Sitzungsb., pp. 33-36.
195. Reeter, O. M., The Scottish Naturalist, V, 1880, pp. 310-311.
*196. Reuter, O. M., Bidr. Finl. Nat., XL, 1880 (separate copy, pp. 1-26).
197. Westwood, J. O., Gard. Chron., (2), NIV, 1880, p. 206, woodcuts.
198. Asmmean, W. H., Orange Insects, 1880, p. 72.
199. Coste, A., Comptes Rendus, X (1, 1880, pp. 462-463.
*200. Targhon-Tozzetti, Bull. Ent. Soc. Ital., N1I, I't. 3, 1880, p. 250.
*201. Bertkat, P., Archiv. f. naturgesch., XLVI, P’t. 2, 1880, p. 386.
202. Aıtcm, B., Forstzoologie, 2ll ed., III, Pt. 2, 1881, p. 330.
203. Packali, A. S., Half hours with Insects, 1881, pp. 118-119, fig. 86.
204. Hagen, II. A.; Psyche, III, 1881, p. 196.
205. Bennett, Psyche, III, 1881, p. 249.

Proc. N. M. vol. xxvi-02-15
206. Darwin, C., P'syche, III, 1881, p. 250.
207. Ilıkт, W. E., l'syehe, 1II, 1881, 1. 25t.
208. Kitchner, l'ayche, IlI, 1881, p. 256.
209. Targoni-Tozzettr, Amali di Agric. No. 34 , scientifie part, 1881, pl. 111, figs. 14, 15, Art. V, pp. 120-134.
210. Tareioxi Tozzettr, Bull. Ent. Noc. Ital., Nill, 1881, p. 210.
211. Ormeron, F. A., Manual Inj. Ins., 1881, pp. xxvii, xxviii, 86-88, tigs.
212. Howard, L. O., Rept. Dept. Agric., 1881, p. 137.
*213. Lütкex, C. F., Dyreriget en Hand-og. Laerebog, Kjohenhavn, 1881-82, p. 446.
214. Lintner, J. A., First Anin. Rept. Ins. N. Y., 1882, pp. 79, 303, 332.
*215. Kratss, H., Zoologische Jahresbericht, f. 1880, I't. 2, 1882, p. 185.
216. Pemanie, Th., Entom. Monthy Mag., AVIII, 1882, pp. 235-236.
217. Perginde, Th., Entomologist, XV', 1882, pp. 94-95.
218. Osbors, H., Psyche, III, 1882, p. 369.
219. Perginde, Th., l'syche, IlI, 1882, p. 381.
220. Lefevre, E., Entomologist, NV, 1882, p. 240.
221. - Wiener Entomologis. Zeitung, I, 1882, p. 104.
222. Dexcax, P. M., The Transformations of Insects, Sixth thous., 1882, pp. 376-377.
*2e3. Osbors, H., Iowa Homesteal, May 26, 1882; also in Western Farm Journal, Sll, 1882, p. 148.
224. Osborn, II., Trans. Iowa St. Ifort. Soc. for 1882, 1883, pp. 205-209.
225. Saunders, Wm., 13th Rept. Eint. Soc. Ontario for 1882, 1883, p. 66.
226. Saunders, Wm., Ins. Inj. to Fruits, 1883, pp. 138, 238.
227. Packard, A. S., Guide to Study of Ins., Sth ed., 1883, pl. 69, 80, 378, 547-550.
228. Packard, A. S., 34 Rept. U. S. Entom. Commission, Pt. 3, 1883, 1. 297.
229. Sicard, IIenri, Elements der Zoologie, 1883, p. 422.
230. Соок, А. J., Ins. Orchard, Vineyard, etc., 1883, pp. 122-123, figs. 100-102.
231. Osborx, H., Canad. Entomol., XV., 1883, pp. 151-156.
232. Altum and Landols, Lehrlmeh der Zoologie, 5th ed., 1883, p. 109.
233. Cassell, Natural History, VI, 1883, pp. 146-147.
*234. Portschinski, J., Rev. mens. Ent., I, 188:3, pp. 44-53.
235. Curtis, J., Farm Insects, 2d ed., 1883, pp. 285-289, 431-432, pl. J, figs. 7-9, pl. o, figs. 14-17.
236. Packard, A. S., Amer. Nat., XVII, Pt. 2, 188:, II!. 820-829; Ann. and Mag. Nat. Hist., (5), X1I, 188:3, 1p. 145-154.
*237. Costa, A., Atti Acall. Napoli, (2), I, 1883, p. 71.
*238. ——, Entomologisk Tidskrift, 1884, p. 90.
*239. ——, Sitzangel. d. Naturf. Gesell. bei Thiv. Dorpat, 1884, 1. 149.
240. Witlaczil, E., Zeit. f, Wiss. Zool., XL, 1884, p. 633.
241. Clais and Semiwick, Elem. Text-book of Zool., 2el ed., P't. 1, 1884, p. 559; th ed., 1892°.
*242. Reuter, O. M., Rev. 1. Ent., II1, 1884, M. $\cdot 290,291$.
243. Ormerod, F. A., (iuide to Methork of Ins. Life, 1884, pl. 30, 149, 150, fig.
244. Tabehon-Tozzettr, letta alla R. Accad. dei Georgofili, 1885; Di Aleuni Rapporti della Coltivazioni Cogli Insetti, 1885, pp. 31, 39, pl. 2, tigs. 6, 7.
245. Wintehead, 11th liep't to Agr. Dept. Gt. Brit., 1885, pp. 152-153.
246. Kirby, Whin., Text-hook of Entomology, 1885, p. 95, 2ll ed., revised and autmented, $1892, \mathrm{pp} .11,12,95$.
247. Osborn, H., Coll. Bull. 2, St. Agrl. College, Iowa, 1885, 1p. 96-97; Trans. Iowa St. Hort. Soc. for 1883, X VIII, 1884, pp. 520-521.
248. Wood, Animate Creation, III, 1885, p. 393.
*249. Scuneider, A., Zool. Beitrage, I, 1885, pp. 257-300, pls. xxxu-xxxy.
250. Zatiel, Handb. d. Palæontology, I, Pt. 2, 1885, p. 784, fig. 999.
251. ——, Bull. Soc. Ent d. Belgique, 1885, p. 1xx.

25．Lintner，J．A．，Secomb Rep＇t Ins．of N．Y．，1885，pp．29，31， $38,56$.
2．3．Felenald，C．H．，Grasses of Maine，1885，1． 42.
＊2．n．Costa，A．，Atti Acul．Napoli，IV，1885，p．12．
255．Bramer，F．，Sitzungsb．d．Math．，－naturw．Classe d．Akal．1．Wiss．，N（1，1＇t．5， 1885，pp．237－413．
＊256．Werner，H．，Handb．d．Getreidehanes，1885̄．
＊257．Kratss，H．，Zoologischer Jahresberieht fur 1883，Pt．2，1885，p． 160.
258．Ormeron，E．A．，sth Rep＇t Observ．of Inj．Ins．during 1884，1885，II．28－31．
＊259．——Bull．Soe．Ent．Belgique，NXIX，1885，p． 70.
260．Hubbaris，H．G．，Ins．Orange，1855，pp．164，165，fig．77，pl．xi，fig． 5.
261．Perez，J．，Comptes rendus，de l＇Acad．d．Sciences，CII，18sit，pp．181－18．3．
＊262．Kkauss，1I．，Zoologischer Jahresbericht for 1886，I＇t．2，1886，p．222．
＊263．Bertkay，Pıí，Arehiv f．Naturgeschichte，LII，1886，Pt．22，I． 126.
26t．Tardioni－Tozzetti，Atti 1．R．Accad．1．Georgofili，4th ser．，VIII，1886，Ip． 425,$426 ;$ Bull．Ent．Sor．Ital．， $1886, ~ p p .425,426$.
265．Levifo，J．，Synopsis d．Thierkunde， 3 l ed．，II，1886，plo．535－5．37，figs．
＊266．Linueman，K．，Bull．Sot．Imp．d．Naturalistes d．Moseow，LAII，1886，No．4， P1．296－337，figs．1－18．
267．Scrmber，S．Ił．，Bull．U．S．（icol．Surv．，No．31，1886，1． 63.
＊206s．Camerox，Trans．Nat．Hist．Soc．Glasgow（new ser．），1，1886，p．：301．
269．Lintner，J．A．，Thirty－thirl Rep＇t Mass．Brl．Agr．for 1885，1886，p．193；Fome Inj．Ins．of Mass．，1886，p． 31.
270．－，New England Farmer，editorial note，June 19， 1886.
271．Webster，F．M．，Rep＇t Iep＇t Mgr．1885，1887，p． 577.
2ヶ2．Lintnek，J．A．，40th Rep＇t N．Y．St．Mus．Nat．IHist．for 1886，1887，pp．96－98．
273．Loxet，Our Insect Foes，1887，1． 27.
2it．Nicholson，H．A．，Manual of Zoology，7th ed．，1887，p． 408.
275．Wood，Insects at Home，1887，pp．259－260，tig．xxvii．
＊ック6．Weei，C．M．，Prairie Farmer，LLX，1887，p．343；Popular Gardening，IH， May，1887，p． 176.
277．Lintner，J．A．，Country Gentleman，LII，June 9，1887，p． 459.
＊278．Bertkiy，Ph．，Archiv f．Naturgeschichte，Lifl，Pt．2，1887，p． 131.
＊279．Forbes，S．A．，Centralia，Illinois Sentinel，1887；Irairie Farmer，June 4， 1887.
＊280．Rebtenbacier，J．，Annalen cl．k．k．Naturh．，Hofmuseums， 1887.
＊281．v．Schlechtexdal，D．，Zeiterhr．f．Naturwiss．，LKi，P＇t．6，1887，pp．551－592．
282．Cook，A．J．，in W＇．J．Beal＇s Grasses of North America，I，1887，pp．375， 401.
＊283．Shipley，A．E．，Bull．10，Miscel．Inform．Roy．（ardens，1887，1． 18.
＊－OS4．Lindemax，K．，Entom．Tidekrift，VIII，Pts．3－3，1887，pp．119－127．
285．Rolleston and Jackson，Forms of Animal Life，2ll ed．，1888，p． 510.
286．Howard，L．O．，Entomol．Amer．，I＇，1888，p． 15 ²．
287．Smiti，Entomol．Amer．，IV，1888，p． 152.
288．Welster，F．MI．，Entomol．Amer．，IV，1888，p． 152.
289．Fletcher，J．，Entomol．Amer．，IV，1888，p． 152.
＊290．Lintner，J．A．，Vinyardist，II，May 1，1888，p． 113.
＊29．1．Lintner，J．A．，Alhany Evening Jourual，July 7，1888，p．7，eol．3．
＊292．Bekinoth，E．，Comptes rendus de la Soc．Ent．d．Belgique（3），No．98，XXXII， 1888，p．xxx．
＊293．Linmeman，K．，Die schädl．Insekten d．Tabak in Bessaralbien，1888，1P．15， 61－75．
294．Lindemax，K．，Piyche，V，1888，p． 23.
＊295．Iloskins，T．II．，Garden and Forest，I，1888，pp．476－47．
296．Osbors，H．，Rep＇t U．S．Dep＇t Agr．for 1857，1888，pp．163－164．
297．Thaxter，R．，Mem．Bost．Soc．Nat．IIist．，IV，1888，P1．151，172，174，pl．xvif， figs．200－219．
298. Oniborx, II., Ins. Life, 1, 188s, pp. 13i-142.
*299. Дїw, F… Wiener Landwirtschaftliche Zsitning, 1888.
300. Pack akl, A. S., Entom. for Pegimers, 1888, if. 55, 73, tigs. 58, 197.
801. P'ackabd, 1. S., Riverside Nat. Hist., 2d ed., 1888, Appemlix.
302. Fletcher, J., 19th Rep't Ent. Noc. Ontario, 1858, 1. 11.
303. Woon, Tı., The Farmer's Friends and Foes, 1888, 1p. 154-155, tig.
304. Targioxi-Tozzettr, Cronaca entomologioa dell'anno 1887, 1888, pp. 8, 5, 8 (or 5, 7,10).
305. (омктокк, J. II., Amer. Naturalist, XXH, March, 18s8, pp. 260-26i.
 91 figs.
307. IIntwer, J. A., Fourth Rep't Jis. of N. Y., 1888, pI. 66, 198.
308. ("омттнк, J. H., Introdurtion to Entomol., 1888, pp. 123-127, figs. 111, 112.
309. Riley-Howard, Ins. Life, I. 1888 , p. 167.
*:SO. Ibsixis, W. H., Embryology of Plysoperda, Moneow, 18ss?
311. Fletciek, J., Amin. Rep't Exp. Farms for 1888, 1889, pp. 59-62.
312. Rilley-Howari, Ins. Life, I, 1889 , p. 340.
313. Nictolsox, Dictionary of (iardening, IV, 1889, 1p. 30-31.
314. lifley, C. V., Ins. Life, I, 1889, p. 301.
315. Lintaer, J. A., 5th Ref't Ins. of N. Y., 1889, 11. 302, 304.
316. Jorday, K., Journ. Roy. Mieros. Soe. Lond., 1889, Pt. 2, pp. 203-204.
317. Cotes, E. C., Indian Museum Notes, I, 1889, pp. 109, 110.
*318. Uzel, J., Puchýřatky (Physoloda), Vesmir. Praha. Bočnik nsmuitetý; Cislo 21, 1889, pp. 241, 243, а 245; čislo 22, pp. 258, a 259.
319. Thixter, R., Ann. Rep't Comi. Agr. Exp. Sta. for 1889, 1889, 1. 180.
320. Laxf, Lehrhuch d. Vergleich. Anatomie, P't. 2, 1889, p. 454.
321. Constock, J. H., Bull. NI, Cornell Agr. Exp. Sta., 1889, p. 131.
322. Fletcier, J., 20thr Rep’t Ent. Soc. Ontario, 1890, pp. 2, 3.

32:. Bronie, 20th Rep't Ent. Soc. Ontario, 1890, pp. 8, 9.
324 . Webster, F. M., Ins. Life, II, 1890, 1. 256.
325. Riley-Howard, Ins. Life, 11, 1890, p. 338.
*326. Mayer, P., Zoololischer Jahreshericht for 1888, 1890, p1. 60-62.
32̌. Garmax, H., Bull. Essex Institute, X'XII, 1890, pp. 24-27.
328. Rhey-Howard, Ins. Life, H11, 1890, pp. 34, 77, 128.
329. (iarman, H., Ins. Life, 11I, 1890, p. 83.
330. Garmas, H., Canad. Entomol., XX゙11, 1890, pp. 215, 216.
331. Forbes, S. A., 16th Rep't St. Entom. of Ill., 1890 , p. ix, pl. v, fig. 4.
332. Krüger, Berichte d. Versuchs-Station f. Zuckerrohr in West Java, 1890. (Notieed editorially in Exp. Sta. Recorl, Dec., 1891.)
333. Mayet, V., Les Insects de la Vigne, 1890.

334 . Hyatt and Arus, finides for Science Teaching, No. VIII, 1890, I口. 113-114, fig. 62.
335. Ormerob, E. A., Manual of Hij. Ins., 2th ed., 1890, pp. 97-99, :384.
:3:36. Scubder, S. H., Rept. U. S. Geol. Surv. Terr., XIII, 1890, pp. 371-3i74, fige.
337. Lintner, J. A., 7 th Rejpt. Ins. of N. Y., 1891, pp. 316, 366, 384.
338. (Asborn, H., Canal. Entom., NX1H, 1891, pp. 93-96.
339. Edwards, 21st Rept. Ent. Sue. Ontario, 1891, p. 103.
340. Forbes, S. A., 17 th Rept. Ins. Hlinois, 1891, pp. xiii, xv.
341. Malle, F. W., Bull. 24, U. S. D. A., Div. of Entom., 1891, pp. 30-31.
342. Laxc, Textlook of Comparative Inatomy, Transl. by H. M. and M. Bernard, I, P't. I, 1891, P. 440.
34.3. Rilet-Howaris, Mns. Life, LII, 1891, p. 301.
344. Webster, F. M., Ins. Life, III, 1891, p. 453.
*345. Ritzema Bus, Tierische Schädl. u. Nutzl., 1891, pip. 574-578, fig. 349.
346. Targoni-Tozzetti, Animali ed Insettidel Tohacco in Erlal del Tolnaceo Séeceo, 1891, p1. 222-224.
347. Bonls, J., Die Munhwerkzeuge d. Physaporlen, Inaug. dissert. fö̈ttingen, 1891, 36 pp .
348. Baker, Amer. Florist, Vif, 1891, p. 168, fig.
349. Weed, C. M., Insects and Insecticides, 1891, p. 95.
*350. Relter, O. M., Meddal. af. Societas pro Fanna et 'ilora Femica, XVII, 18:91, 11. 161-167.
*351. Hofmany, J. M., Verein f. vaterl. Natürkmule in Wrurtembery, XLViI, 1s:91, pp. 24-28.
352. Coqullett, I. W. Ins. Life, IV, 1891, p. 79.
353. Fervald, C. II., Bull. 19, Mass. Exp. Sta., 1892, 1. 116.
354. Riley-Howard, Ins. Life, IV', 1892, p. 354.
355. Riley, C. V., Ins. Life, V, 1892, p. 18.
356. Osborn, H., Ins. Life, V, 1892, pl. 112-113.
357. Fletcher, J., Ins. Life, V, 1892, pp. 124, 125.
358. Forbes, S. A., Ins. Life, V, 1892, py. 126, 127.
359. Webster, F. M., Ins. Life, Y, 1892, p. 127.
360. Townsend, C. H. T., Canal. Eutom., AXIV, 1892, p. 197.
361. Schneider, Book of Choice Ferns, 1, 1892, 11 1 . 170, 172.
362. Kobus, J. D., Bull. 43, Proefstation, Oost-Java, 1892, fig., 1-4.
363. Gillette, C. P., Amm. Rept. Col. Exp. Sta. for 1892, 1892, p. 36.
*364. Riley, C. Y., Bull. 39, Smithsonian Inst., Part F, 1892, pp. 18-19, fig. 22.
*365. Taschenbere, E. L., Brehm's Thierleben, IX, 1892, 111. 609-611, 2 figs.
366. Clats and Sedgwick, Elem. Textbook of Zool., 4th ed., I, 1892, p. 559.
367. Lintner, J. A., Country Gientleman, Oct. 27, 1892, p. 809.
368. Ormerod, E. A., Texthook of Agric. Entom., 1892, pp. 33, 195-197.
369. Targioni-Tozzetti, Animali ed Insetti del Tobacco in Erbe e del Tobacco Secco, 1892, pp. 9, 10.
370. Lugger, O., Bull. 28, Univ. of Mich. Agr. Exp. Sta., 1893, lp. 120-121.
371. Green, Indian Museum Notes, II, 1893, No. VI, p. 172.
372. Kolbe, H. J., Einführung in die Kentniss der Insekten, 1893, p1. 211, 225, 284, 287, 598.
373. Lintner, J. A., 8th Rept. Ins. of N. Y., 1893, pp. 254, 255.
374. Fletcher, J., Ann. Rept. Exp. Farms for 1892, 1893, p. 145.
375. Briner, L., Rept. Neb. St. Bd. Agr. for 1893, 1893, p. 457, fig. 96.
376. Woodworti, C. W., Rept. Agr. Exp. Sta. Univ. Calif. for 1891-1892, 1893.
377. Daris, G. C., Bull. 102, Mich. Agr. Exp. Sta., 1893, p. 39, fig. 10.
*378. Jablonowski, J. Potfuz. Termes. Kozl., XXII, 1893, pp. 17-24.
379. (illlette, C. P., Bull. 24, Col. Agr. Exp. Sta., 1893, pp. 13-16.
380. Lintaer, J. A., Ninth Rept. Ins. of N. Y., 1893, pl. 377, 445.
381. Smiti, J. B., Amm. Rept. N. J. Agr. Col. Exp. Sta. for 1893, 1893, p. 441.
382. Gillette, C. P., Ann. Rept. Col. Exp. Sta. for 1893, 1893, p. 55.
383. Hoskins, Psyche, VI, 1893, p. 557.
384. Riley-Howard, Ins. Life, Vt, 1893, p. 45; 1894, 1p. 211, 343.
385. Osborn, II., Ins. Life, V I, 1893, pp. 74, 80.
386. Asimead, W. II., Ins. Life, V'tI, 1894, p. 27.
387. Trybon, F., Entom. Tidskr., XV, Pts. 1, 2, 1894, pp. 41-58.
*388. Bruner, L., Ann. Rept. Nel. St. Bl. Agr. for 1893, 1894.
389. MeMtrrich, J. P., Textbook of Invertebrate Morphology, 1894, pp. 509, 510, 526.
390. Davis, G. C., Bull. 116, Mich. Agr. Exp. Sta., 1894, pl. 62, 63.
*391. Jablonowski, J., Termes Fizetek, XVII, 1894, p1. 44-47, pl. in; 1p. 93-99, 11. iv.
392. Webster, F. M., Ins. Life, V'II, 1894, p. 206.
39. Simanamd Lowe, Bull. sis, new series, N. Y. Agr. Exp. Sta., 1894, pp. 6so-682, 11. 11; alsw in 13th Am. Rept. N. Y. Exp. Sta. for 1894, 1845, H1. $788-760$, pl.
*:394. Reapek, R., Finska Landthuksstyrelsens Medtelanden, 1s94, Nu. Vil.

399. Xinel, Whı, Biol. Zonl., N'TII, 1894, pp. 67-132; Summary in Biol. Centrabl.,

397 . Webster, F. M., Ohio Farmer, Aug. '2, 1894, p. 97; Ang. 23, 1894, p. 157; Nov. 7, 1895, 1. 373.
398. Smim, J. B., Rept. Entomol. N. J. Agr. Col. Exp. Sta. for 1893, 1894, p. 441.
399. (Raw, A., Fourth Dien. Lept. St. Brl. IIort. Calif. for 1893-94, 1894, pl. 87, 88.
400. Woomwortı, C. W'., Fourth Bien. Rejt. St. Bel. Hort. Calif. for 1893-94, 1894, p. 140 .
401. Brever, L., Introul. to Entomology, 1894, pp. 9, 44, 135, 139, 186, 202, 295.
40%. Bruver, L., Rept. Neb. St. Hort. Soc. for 1894, 1894 , 11. 163, 214, fig. s2.
403. Corkerell, T. D. A., Bull. 15, N. Mex. Agr. Exp. Sta., 1895, p. 71.
104. (mborx-Mally, Bull. 27, Iowa Agr. Exp. Sta., 1895, pp. 139-142.
405. Webster, F. M., Buhl. 58, Ohio Agr. Exp. Sta., 1895, pp. xxxiii, xxxiv, fig. 3.
401. Onmerols, E. A., 18th Rept. Obs on Inj. Ins., 1895, 1. 41.
407. Cotes, E. C., Indian Museum Notes, 1II, 1895, p. 43.
108. Constock, J. H., Mamal for the Stndy of Ins., 1895, pp. 119-120, figs. 137, 138.

40\%) Uzel, H., Monographie d. Orl. Thysanoptera, 1895,500 pp., 10 pls.
*410. -. Archiy f. Naturgeschichte, LXI, 1't. 2, 1895, 1. 214.
*411. Uzel, 11., Zool. Centrabl., III, No. 24, 1895, pp. 845-848.
412. Trybox, F., Entom. Tidskr., XVI, Its. 1-2, 1895, pp. 157-194.
*413. Bloescif, Fenille Natural, NXY 1895, 1. 76.
414. Perginiee, Tir., Ins. Life, V'II, 1895, pp. 390-395.
415. Silars, D., Cambrilge Nat. Hist., Vr, 1895, pp. 172, 178, 175.
416. Lintner, J. A., 49th Rept. N. Y. St. Mus. Nat. Ilist., 1896, pu. 241-250; also, as 11th Rept. Ins. of N. Y. for 1895, 1896, pip. 241-250.
417. Davis, (4. C., Special Bull. No. 2, Mich. Agr. Exp. Sta., 1896, pl. 13-14, fig. 4.
418. Beaeri, A. M., Proc. Iowa Acal. Se., 1895̆, III, 1896, pp. 214-227.
419. Onbore, Hl., P'roe. Jowa Acad. Se., 1895, ILI, I896, p. 228.
420. Bergrotn, E., Ami. Soc. Ent. Belgique, NL, 1896, pp. f6-67.
421. Perciande, Tho., Entomological News, VII, 1896, pp. 63-64.
422. IIopkixs-Rumser, Bull. 44, Wr. Va. Agr. Exp. Sta., 1896, pp. 270-271.
423. Tribos, F., Oif. Ak. Forlı., 1896, pp. 613-626.
424. Trybon, F., Ent. Tidskr., XVII, 1896, pp. 87-104, figs 1-4. Alpstract in Amer. Nat., XXXI, 1897, pp. 545-546, 4 figs.
425. Trybos, F., Lilljeborgs Festskrift, 1896, pp. 213-229.
*426. Ladurear, A., La Nature Amn., NXI 1 , 1896, p. 80, 1 fig.
427. Slivgerland, M. V., Rural New Yorker, LV, 1896, p. 561.
428. Garmas, H., Amer. Naturalist, NXX, 1896, pp. 591-593, 1 pl.
429. Trybon, F., Zool. Centrabl., I V', No. 12, 1896, p. 419.
430. Theobald, F. Y'., Insect Life, 1896, pp. 200, 210, 211 (London).
431. Frank, Die tierparasitären Krankheiten d. Pflanzen, 1896, pp.131-134, fig. 35.
432. Smitif, J. B., Economic Entomology, 1896, pp. 101-103, fig 73.
433. Zenntner, L., Overzicht van de Ziekten van het Suikerriet op Java 2 deel. Vijaulen nit het Dierenryk. Arch. Java-Suikerind, 1897, 10 pp . See also Zool. Centrabl., 1898, p. 803.
434. Britron, IV. E., 20th Rept. Comm. Exp. Sta. for 1896, 1897.
*435̄. Jablonowski, J., Potíuz. Termes. Kozl., 1897, pp. 146-157.
430. Somerville, W y., Farm aml Garden Ins.,1897, pp. 60, 61, nig. 20.
487. Cosstock, J. II., Insect Life, 1897, pp. 74, 75, fig. 57.

4iS. Smbine, F. A., 15th Am. Rept. N. Y. St. Exp. Sta. for 1896, 1897, pp. 612-613.
489. Quantance, A. L., Bull. 42, Fla. Agr. Exp. Sta., 1897, Dp. 552-564.
440. Packard, A. S., Zowlogy tor high schook and colleges, 10th ed., 1897, p. B48.
441. Taplin, W. H., Garden and Forest, X, Mar. 17, 1897, p. 106.

* 442 . Rolfs, P. II., 10th Ain. Meet. Fla. St. IIort. Soc., 1897, p. 97.

443. Eckstenn, Forstliche Zoologie, 1897, p. 566.
444. Simme, F. A., Bull. 115, N. Y. St. Agr. Exp. Sta., 1897, p. 70.
445. Slingerlani, M. V., Rural New Yorker, May 8, 1897, p. 309.

* 446 . Licas, Ros., Arehiv f. Naturgeschichte, LXI, 1897.
${ }^{*} 447$. Aclogee, A., Fanna de France, II, 1897, Orthopteres.

448. Reuter, O. M., Acta Soc. Fauna Flora Fenu., X VII, 1897?, No. 2, 69 pp., fig. Alst. in Zeitsch. f. Entom., V, Dec. 15, 1900, p. 387.
449. lloward, L. O., Bull. 18 (new ser.), U. S. Dept. Agr., 1898, p. 101.
450. Lintser, J. A., 51st Aim. Rept. N. Y. St. Mus. Nat. Hist., 1898, p. 363. Also in 13th Rept. Inj. Ins. of N. Y., 1898, p. 363.
451. Rolfs, P. M., 11th Am, Meet. Fla. St. Hort. Soc., 1898, pp. $34,38$.
452. Putnam, F. A., New England Farmer, July 2, 1898.
453. Buffa, l'., Riv. Patol. Veget., VII, No. 1-4, 1898, pp. 94-108.

45t. Quantance, A. L., Bull. 46, Fla. Agr. Exp. Sta., 1898, pp. 77-114, 12 figs.; Asct. in Exp. Sta. Recorl, X, No. 9, pp. S67, 868.
455. Packiri, A. S., Textbook of Entomology, 1898, p. 597.
456. Howard, L. O., Yearbook, U. S. Dept. Agr. for 1898, 1899, pp. 142, 143, fig. 27.
*457. Matstmura, M., Zool. japon., III, No. 1, 1899, pp. 1-4, 1 pl.
458. Buffa, l’., Riv. di P'atol. Veget. Vil, Nus. 5-8, 1899, pp. 129-135, 136-142, pl. v, figs. 1, 2, 3; pl. v11, figs. 19-22.
459. Briner, L., Ann. Rept. Neb. St. Hort. Soc. for 1898, 1899.
460. Puppel, M., Schr. nat. Ges. Danzig. N. F., X, 1899, pp. 46-48.
461. Carpenter, (i. B., Insects, their Structure and Life, 1899, pp. 183-185, fig. 100.
462. Silarp, I)., Cambridge Nat. Hist., V'I, 1899, pp. 526-531, fig. 254.
*463. del Guercio, G., Atti della R. Acat. dei Georgofili, XXit, No. 1, 1899, pp. 50-76, 6 figs. Ako in Bull. Soc. Ent. Ital., X.XX, pp. 165-186, 6 figs; also in Nuove Relazioni della R. Sta. li Ent. Agraria, No. 1, 1899, pp. 207-233, 5 figs.
464. Petrit, R. H., Bull. 175, Mich. Agr. Exp. Sta., 1899, pp. 343-345, figs. 1, 2.
465. Quantajele, A. L., Bull 20 (new ser.), [. S. Dept. Agr., 1899, p. 59.
466. Werster, Mally, Bull. 20 (new ser.), U. S. Dept. Agr., 1899, pp. 69-70.
467. Trybon, F., Ent. Tidskrift, XX, 1899, pp. 194-196, 267-277.
468. Schenklinf, S., Illust. Zeitsch. f. Entom., V, No. 1, Jan., 1900, p. 9.
469. Hivis;, W. E., 37th Ann. Rept. Mass. Agr. College, 1900, pp. 81-105, 4 pls., 33 figs.
470. Siuth, J. B., Rept. Entom. Dept. N. J. Agr. Exp. Sta. for 1899, 1900, pp. 427, 428.
471. Fervalu-Hinds, Bull. 67, Mass. Agr. Exp. Sta., 1900, pp. 1-12, 1 pl.
472. Reuter, E., Acta Soc. Fauna Flora Fenn., XIN, 1900, pp. 16, 17, 68-75, 9294, 97-99, 115, 116, 117, 120.
473. Tümpel, R., Die Geradflügler Mitteleuropas, 1901, pp. 278-298, pl. xxıi, 7 figs.
474. Garmax, II., Bull. 91, Kentucky Exp. Sta., 1901, pp. 42-45.
475. Leonardi, G., Gli Insetti Nocivi, IV, 1901, pp. 614-657.
476. Webster, F. M., Journ. Columbus Hort. Soc., XVI, No. 3, 1901, 7 pp., 4 figs.
477. Hinis, W. E., Proc. 17th Amn. Conv. Soc. Amer. Florists, 1901, pp. 90-92.
*478. Lucas, R., Archiv f. Naturgesch., LXV, ii, 1901, p. 900.
*479. Reuter, O. M., Ofv. Finska Vetensk. Forh. Holsingfors, XLIII, 1901, p. 214.
480. Cimitcenden, F. H., Florists' Review, April 17, 1902, pp. 738-740.

INDEX TO GENERAL STBJECTS.

Page.
Introduction 79
History of Thysanoptera 81
Systematic prosition of Thysanoptera 82
Collection of Thysanoptera st
Preservation and momting 85
External anatomy 87
Integment: adult, larva, pupa 87
Head: antenme 89
Organs of vision: eyes, ocelli 91
Mouth parts: labrum, maxilke, labium, mandible, maxillary lobes, other month structures, movements of mouth parts 91
Thorax: prothorax, mesothorax, metathorax, variation in structure of ptero- thorax in wingless species 95
Appendages of the thorax 98
Legs: coxa, trochanter, femur, tibia, tarsus, spines, bladder, bladder mech- anism, other organs of doubtful function 98
Wings: venation, fringing, spines upon wings, taking flight, coorlination of the wings, reduction of the wings 101
Abdomen: Terebrantia, Tubulifera 105
Sexual characters 107
Terebrantia: female, ovipositor; male 107
Tubulifera: female, male, copulation 109
Deformities 110
Reproduction: hisexnal reproduction, unisexual reproduction 110
Dissemination 111
Development: oviposition, egg, embryology, emergence of the larra, larval stage, moits, nymph or pupa, hibernation, length of life 112
Economic considerations 116
Injurious forms: feeding habits 116
Beneficial forms: predaceous thrips, flower fertilizers 117
Natural checks: insects and acari, ete., plant parasites, rain 119
Artificial checks: insecticides, cultural methods 119
Characters of Thysanopteria 121
Method of measurements 122
Individual variations 123
Synopsis of suborders and families 124
Characters of Terebrantia. 124
Characters of Aeolothripilia 126
Characters of Thripide 132
Synopsis of Thripide. $1: 3$
Characters of Tubulifera (Phlceothripide) 186
Synopsis of Phloeothripidie. 187
Unclassified descriptions 208
Fossil Thysanoptera 210
General considerations. 213
Bibliography 221
ludex to families, gencra and species 233
Index to food plants. 234
Explanation of plates. 236

INDEX TO FAMILIES, GENERA, AND SPECIES.

Family names are in small caps. Generic names begin with a sapital, and specific names are in small type. Synomys are italicized.

References to deseriptions are in heavy type.

l'age. Acanthothrips	
adonidum 168, 169	Empusa-. .--. .-. . . 119
	Entomophthora 119
$89,90,93,99,102,103,104,108,109$,	Eurythrips. 187, 202, 203
$124,126,186,216,217,218,219$	Euthrips . 116 ,
Eolothrips $96,102,127,128,130$	$120,138,147,148,152,154,155,156$
Aleurores.......................... 118	extincta .-...-.-......-.-.-.-..... 210
allii . . . - 179	fasciapennis............-. .-. .-. 168,171
nbitus. . . - - - - - 191	fasciata 127 , 128, 174
ampliventralis............... 202	fasciatus.... $127,132,168,174$
Anaphothrips $107,111,112$,	femoralis-. - - 168,172
$115,118,119,129,132,133,160,161$	fossilis.-.-. -. .-.-. .-. --. .- 212
antennatus.......-.-........-.-. 134,136	fuscipennis....... .-. 159
Anthothrips .-. -. .-............ 188	fuscus .-. .-. - - - - - - .-. 148,154
Aphidee.......................... 105 . 111	gossypii - - 118
Aptinothrips . . . 90, 111, 124, 133, 166,167	grass thrips - 120, 161, 16 n
aspersus 205	(iyrophzena .-..................... - 119
Aspidiotus . 175	hemorrhoidalis 111, 168, 169
ater-. .-. - - - 119	Heliothrips 82, 176
urantii - . 175	Ileliothrips................... S7, $^{\text {a }}$, 1,97 ,
aソenæ -...-. - .-. .-....-. - 139	$111,113,133,168,169,171,172,174$
beachi....-.-. .-. .-. -- .-. .-. 191,192	Idolothrips - . - - 188, 206
bicolor .-. - 130,132	inequalis-........ 182, 146
black fly - - - - . . . 170	insidiosus . .-. .-. -- - .-. .-. .-. .-. 119
brunnea -2, 110	Limothrips 79, 80, 161, 179, 183, 208
+æ . - 79, 209	Limothrips 90, 13:3, 138,139
caryæ-10lix - - - - 118	Lithadothrips 210,211
Cephalothrips. 188,194	longipennis ...-.-. .-. .-.......... 134
cerealium .-....-. 138, 208	longistylosa - 160
restri....-.......-. .-. 17 -	Macrosporium - 119
Chirothrips $30,95,98,10.5$,	maculata.. - 119
$108,11^{2}, 125,126,133,134,136,137$	magnafemoralis-. 199
Chrysopa .-.-. .-................. 119	maidis . - 155, 156
cingulatus. - . - . - 141	Malacothrips..................... - 188, 200
Corcus-. .-. .-. -- .-. .-. . . 81	
Coleothrips .-.-................ 127,128	manca - 119 (19)
communis 81, 179, 180	manicata . - - - - 134
coniferarum. 206	manicatus $105,133,134$
connatticornis. - $90,166,167$	Megillat - - - 119
crassus . .-. 1383,136	Melanothrips.... - - - 210
Cryptothrips.................... 188,205	minuta-. .-. .-. 119
Cynipidet.........................- 118	

Page.	l'age
	6-maculata 157
148,155	6-11aculatus - 118, 157
niger .-. 188	sphaerosprrma 119
y1:1 - . 188	striutı? . 81, 179
nigriventris 154	striata 81,161
10s, $112,133,137$	striutus......... 179
neridentalis 148, 152,154	striatus. . - . . - - - - - . - - - - . - 107, 111,
(mion thrip) - 120, 179, 183, 184	$112,115,118,119,120,1: 32,160,161$
(ね)	stylifera .-......................... 166
1'almothrips - 211,212	Syrphus 119
pullilu........................... 157, 158	taluaci . - 81,
P'arthemothrips..................... s $^{\text {a }}$,	$111,116,117,119,120,179,180,183$
(10, $91,102,111,138,175,176,217$	
perganciei........................... 197	$96,94,102,103,104,108,116,118$,
1ヶrplexa - . 184	$124,132,133,186,216,217,218,219$
	Thrijs - .-......... 79, 80, 81, 118, 127,
$93,96,95,99,100,101,103,104,114$,	$\begin{aligned} & 134,14:, 145,146,148,152,155,156 \\ & 157,158,161,166,168,169,176,183 \end{aligned}$
$118,186,187,215,216,217,218,219$	Thıiрн.............................. S1,
I'hluothrips.................. 161, 18S, 189	$82,108,111,112,116,117,118,119$,
1hlanothrijs 79 ,	$120,133,178,179,180,183,184,209$
82, $110,118,188,195,196,197,209$	
1'hylloxera......................... 118	Tilmipilten 81
phylloxere - 79,118	Trichothrips - 187, 191, 192
PıYs.ı1-. 81	3-fasciata. - . - 128
	trifusciutı 128
Physapus.......................... 147	trifasriatus..... - 118, 209
Phy!soput. 81, 147, 154, 155	Triphleps - 119
рояр)	tritici .-...............- 79, 179, 183, 208
Pseutothrips. 132, 133, 146	tritici. $116,120,147,148,154$
Riphhictothrips .-..........- $133,158,159$	Trombidiun 119
	uzeli.-................-. .-. .-. . . . 196
	variabilis $141,143,145$
1ufus $90,111,124,166,167$	
S'olothrip-. 133, 157	Vesitalisen . 81, 82
Scymmms......................-. . . . 119	vetusta-.-.-................. 211
vecticornis - .-. - 209	wheat thrips 148, 183
Sericothri¢s........ - . - 184	уисске-. .-. 194
Sericothrips........ ss, 102, 133, 141, 143	zonatus . 200

INDEX TO FOOI PlANTS.

Fieneric names begin with capitals, sperific and common names with small letters. Scientife manes are italicized.

 агепигеит - 162
Azalect . 170
balmorina 177
bean....................................... 158
birolor 150
bindweed . 132, 150
blacklerry 150, 158
blanket flower-........................ . . 181
blue graw . 181
Bromus 162
Brumella 182
buckwheat . 129, 130
buttercup .-.......................... 150
cabbage. 181, 18.

rtuntedensis. 181
candytuft 181
стиіии 162

camna .-................................. 150
cupilare 197
catnip 181
cauliflower............................. . . 181
celery 129, 181
cereals................................... . . 185
Cestrum................................... 173
cherry .-................................. . . . 150
chickweed 181
Cliryśtnthemum 173
cinquefnil.............................. 181
Ulematis............................... . . 145
clover . . . 129, 130, 135, 145, 150, 181, 197
Compositi'-.............................. 129
сотрressя 162
cone-flower 150, 181
corn . 156, 185
cotionwoor 158
cral)-grass................................ 181
Crimum 173
Ciotun 170
rrus-galli 162
cucumber 146, 173, 181
Cyperus 185
Inctylis . 185
dahlias 170
dandelion 150, 181
dlog-tooth violet 150
Drıсяни . 173, 177
duriuscola 162
elustica...... 173, 177
plutior
elim.

Elyтия 162
English pea . 150
Erechthites 181
erectus 162
Erigeron 181
Eucharis 173
ferns 1 . 1 .
Festuct 188, 141, 16:
Ficus 173, 177
filamentosa 195
fluescons-rera.............................. 162
fletcheri 162
four-ө' clock 181
Gurdemin 1 . 1 .
garden leek 181
glomerttt 185
goldenrod..................... . 150, 181, 195
(iossypium 17:
yfrentitlore 173
мгарщ..................................... 206
grass 146, 155, 160, 172, 155, 142, 198
grasses 129, 132, 135,
$148,150,156,167,185,189,197,205$
hackberry 145
hardhark 150
hustata.................................... 170
hawthorn.............................. 145
heal-all 150, 181
heliotrope 150
heterophylln 162
honeysuckle 150, 181
hop --...................................- 158
Hydrangea 150, 173
inernis................................... 162
iops....................................... 208
Jamestown-weed 181
jimson.................................... 181
June grass 120, 165
Juniperimus 208
kale 181
Kentia 177
Liliaceae 170
lilies...................................... 150
lobata.................................... . . 173
Lolium. $16 \geq$
melons 181
mesquite............................... . . 150
mignonette 181
millefoliem 189
Міия 173
montrmut 197
momnflower 173
mullein 181, 191
nasturtinm............................. . . 181

EXPLANATION OF PLATES

In the figures of wings of species of Terebrantia the hind fringes are not fully represented on amount of their great length.

PLATE 1

Fig. 1. Eutothrips fusciutus Limmens. Heal, prothorax, antenne, and fore legs of femate. $\quad 6^{62}$.
2. Ehlothrips fuscintus, left fore wing of female. $\frac{62}{1}$.
3. Euloilnips fusciutus, end of abdomen of female. $\frac{62}{1}$.

1. Eolulnips hicolor, new species. Head, prothorax antenne, and fore legs of female. ${ }^{\text {tiz }} \mathrm{i}$.
2. Suluthrizs licolor, end of abstomen of female. $\quad \begin{gathered}62 \\ 1\end{gathered}$.

Fig. 6. Eolothrips bicolor, anterior part of abdomen at junction with metathorax showing first ablominal segment of make. $\frac{8.5}{1}$.
7. Folethrips birolor, ent of abrbomen of male. $\frac{85}{1}$.
8. Woluthrips licoln, left antema of mate. $\frac{62}{1}$.
9. Fore tarsal hook present in both sexes of Eolothripidie. $\frac{213}{1}$.
10. Limothrips arcuar, new species. End of abolomen of femate. $\frac{85}{1}$.
11. Limenthrips arenar, end of abrlomen of male. $\frac{85}{1}$.
12. Limothifs thetai, right fore wing of femate. $\frac{62}{1}$.

PLATE II.

Fig. A3. Limothrigs arener, new species. End of abdomen of female. $\frac{85}{1}$.
14. Chirothrips monicutus Haliday. Heat, prothorax, antennet, and legs of female. $\frac{107}{1}$.
15. Chirothrips manicates, end of abdomen of male. $\frac{107}{1}$.
16. Chirothrips memicatus, left fore wing of female. $\quad 62$.
17. Chirothrips crussns, new species. Head, prothorax, and anteme of femalt$\frac{107}{1}$.
18. Chirothrips crassus, end of abdomen of female. $\frac{107}{1}$.
19. ('hirothrips crassus, head, prothorax, antenne, and fore legs of male. ${ }^{107}$.
20. Chirothrips crassus, end of abdomen of male, $\frac{107}{1}$.
21. Chirothrips obesus, new species. Head, prothorax, antemee, and fore legs of female. $\frac{107}{1}$.
22. Chirothrips obesus, end of abdomen of female. $\frac{107}{1}$.
23. Sericothrips variahilis (Beach). Left fore wing of female. $\frac{107}{1}$.

PLATE III.

Fig. 24. Sericothrips reriabilis (beach). Head, prothorax, and antennae of female. 107.
25. Sericothrips rariabilis, end of abdomen of female. $\frac{107}{1}$.
26. Sericothrips ceriabilis, end of abdomen of male. $\frac{107}{1}$.
27. Sericothrips cingulatus, new species. Head, prothorax, and anto... ni female. $\frac{107}{1}$.

Fig. 2s. sivicothrips simgutatus. and of abrlomen of female.
29. Sericothrips cingututus, cond of abdomen of mate. $\frac{107}{1}$.
30. Ispuththrifs inequatis (Berach). Ilead, prothorax, antemse, and fore leys of fomale. $\frac{107}{1}$.
31. I'scudothripus inequatis, end of alxdomen of femate. $\frac{107}{1}$.
:32. I'sruththrips inequalis, right fore wing of female. $\frac{107}{1}$.
(3:). Euthrips merrosus (ľzl). Heal, prothorax, antennse, and fore legs of femate. $\frac{62}{1}$.
34. Euthrips mercosis, end of abxiomen of femate. $\frac{62}{1}$.

1LATE 1 V .

Fis. 35. Buthrips meroosus (Uzel). Light fore wing of female. $\frac{62}{1}$.
36. Futhrips tritici (Fitch). Head, prothorax, antemee, and fore legs of female. 107.
37. Futhrips tritici, cond of alndomen of female. $\frac{107}{1}$.
38. Euthrips tritici, end of abdomen of male. $\frac{107}{1}$.
39. Wuthrips tritici, leit fore wing of female. $\frac{85}{1}$.
40. Euthrips fuscus, new species. Heal, prothorax, antenme, and fore legs of female. $\frac{107}{1}$.
41. Wuthrips fuscus, end of almonen of femate. $\frac{107}{1}$.
42. Srotuhrips (i-muculutus (Pergande). Head, prothorax, antenna, and fore legwif femate. $\frac{107}{1}$.
43. Sicolothrips 6 -maculatus, end of abtomen of femate. $\frac{107}{1}$.
44. Scolothrips 6 -mumbatus, end of abrlomen of male. $\frac{107}{1}$.
45. Sicolothrips 6 -matututus, right fore wing of female. $\frac{107}{1}$.

PLATE V゙.
Fig. 46. Rin, hinthrips fuscipemis, new series. Head, prothorax, antemas, and fort legs of female. $\frac{85}{1}$.
47. liaphictothrins fuscipermis, end of abromen of female. $\frac{85}{1}$.
48. Raphidothrips fuscipermis, left fore wing of female. $\frac{85}{1}$.
49. Anuphothipsstriufts (Osbom). Head, brothorax, and antenne of female $\frac{8.5}{1}$.
50. Antuphothrips striatus, end of ablomen of female. $\frac{85}{1}$.

Fig. 51. Inaphothrips striutus, right fore wing of female. $\frac{85}{1}$.
5:. Aptholhrips rufus (cimelin). Head, prothorax, and antennar of female. 107
53. Aptinuthrins rufus, end of alulomen of fentate. $\frac{107}{1}$.
54. Aptimothrips rufus var. comuntticormis UTel. Antenne of female. 107
55. Heliothrips femoralis Renter. Head, prothorax, antenne, and fore legs of femate. ${ }^{62}$.
56. Heliothrips femoralis, end of abdomen of female. $\frac{62}{1}$. PLATE V1.
Fig. 57. Itholhrips femmohis Reuter. Left fore wing of female. $\quad 62$.
55. Ifrlothrips fusciopennis, new speeies. Head, prothorax, and antenne of female. $\frac{107}{1}$.
59. Hefiothrips fasciapennis, end of abmomen of female. $\frac{107}{1}$.
60. Heliothrips fasciapennis, right antenna of female. $\frac{167}{1}$.
61. Heliothrips fusciapennis, right fore wing of iemale. $\frac{85}{1}$.
62. I'urthenothrips dracter (Heeger). Head, prothorax, antenna, and fore legs of female. $\frac{62}{1}$.
63. P'arthemothrips drucamar, end of alodomen of female. $\frac{62}{1}$.
64. I'erthenothrips Itratemer, portion of retienlation from head of female. ${ }^{213}$.
65. I'arthenothrips drucarnar, left fore wing of female. $\frac{6 \geq}{1}$.
66. Thrips perplerws (Beach). Head, prothoras, antennz, and fore legs of iemale. $\frac{107}{1}$.
67. Thrips perpleors, ent of abriomen of female. $\frac{107}{1}$.

J'LATE V1I.

Fig. 64. Thrips taburi Lindeman. Head, prothorax, antemae, and fore legs of female. $\frac{107}{1 .}$
70. Thrips tubuci, end of abslomen of female. $\frac{107}{1}$.
71. Thrips tublaci, left fore wing of female. $\frac{85}{1}$.
72. Anthothrips niger (Oslorn). Head, prothorax, and iore legs of female. $\quad{ }^{62}$.
73. Anthothrips niger, end of abdomen of female. ${ }_{1}^{85}$.
74. Anthothrips niger, left antenna of female. $\frac{85}{1}$.

Fig. Th. Anthothrips niger, left iore wing of female. $\frac{62}{1}$.
76. Inthothrips embusci (Osborn). Head, prothorax, antenne, and fore legs of femate. $\quad{ }^{50}$.
77. Athethrips erthesci, end of abmomen of femate. $\frac{50}{1}$.

Tis. Inthothrips methesi, left antema of female. ${ }^{8.5}$.
79. Trichnthips homh, new pecies. Head, prothorax, antenme, and fore legs of female. $\frac{50}{1}$.

PLATE VIII.

Fig. so. Trichotherips buchi, new pecios. End of alownen of femate. $\quad \frac{50}{1}$.
s1. Trichuthips antuitus, new species. Heanl, prothorax, antemma, and fore femora of female. $\frac{50}{1}$.
s.2. Trichothrips ambitus, end of ablomen of female. $\frac{50}{1}$.
83. Cephuthrips yucar, new species. Ilear, prothorax, antenna', and fore legs of female. $\frac{50}{1}$.
St. Cephatothrips mucca, end of abdomen of female. $\frac{50}{1}$.
85. Phluothrips perymuld, new siecies. Head, antenna, prothoma, and fore legs of female. $\frac{50}{1}$.
Sis. Pheothrips peryfudet, end of ablomen of female. $\frac{50}{1}$.
s7. I'hlothrijs uzeli, new species. Head, prothorax, antemee, and fore legs of male. $\frac{50}{1}$.
Ss. Ihlowhrips uzeli, end of alxhmen of male. $\frac{50}{1}$.
s9. Ihlocothrips uzeli, under side of right fore leg of male. $\frac{85}{1}$.
90. Ihluothrips nzeli, upper side of left fore leg of male. $\frac{85}{1}$.

PLITTE IX.
Fiy. 91. Phheuthrips uzeli, new species. Head, prothorax, antenne, and fore legs of female. $\begin{gathered}50 \\ 1 .\end{gathered}$
92. Phocothri,s uzeli, end of alrlomen of female. $\frac{62}{1}$.
93. Icrnthothrips mugnufemoralis, new species. Head, prothorax, antennie, and fore legs: of male. $\frac{50}{1}$.
94. Actuthothrips magnafouoralis, end of abolomen of male. $\frac{50}{1}$.
95. Malacothrips zonatus, new genus and new species. Hearl, prothorax antemace, and fore femora of male. $\frac{50}{1}$.
96. Malacothrips zonatus, end of abclomen of male. $\frac{50}{1}$.

Fig. 97. Maturohthips zometur, head, prothorax, antemnas, and fore leges of female. $\quad \overline{50}$.

99. Eunthrips ampliventralis, new gemme:nml new species. Hoad, thorax, and fore lege of iemale.

101. Eurythrips anplimentrelis, left antema of female. Sis.

PLITEX.
Fig. 102. Eurythrips shmmi, new gemus and new speries. Ilead, prothomax, antennar, and fore legs of female. \boldsymbol{B}_{2}^{2}.

104. Criptothripe uspeste, new species. Hearl, prothorax, athl fore legs of female. ${ }_{5}^{50} 1$.

10̄. Intothrips romiferarum l'ergande. Dead, prothorax and fore legs of make. ${ }_{1}^{3:}$
10s. Iftolotrips comiferurm, end of abslomen of male.
109. Idolothrips coniferarmm, heat, prothorax, and fore legs of fomale.
110. Itutothrips conifererum, right antemat of female. $\quad 1$.
111. Thrips tabuci, longitutinal-sertical section throngh anterior part of bonly showing form of head and thorax and position of nervons system and alimentary canal. $\frac{83}{1}$.
112. Amohothrips strictus, surface view of stigma from first alshominal sewsment. ${ }^{716}$.
113. Amphothrips striatus, cross section through stigmat from lirst abdmminal segment. $\begin{gathered}716 \\ 1\end{gathered}$.
114. Anthothrips rerboser, under side of last two abrominal segments of male; A, notch in base of tube. $\quad 6_{1}^{2}$.
115. Anthothrips reploseri, under side of last two almbominal sermente of female;

A, ditinons rowl. $\frac{62}{1}$.
PLATE KI.
Fig. 116. Eolothrips fuscintus, dorsal view of pterothorax of female. $\frac{62}{1}$. A1, first ablominal tergite; A2, second alxdominal tergite; M1, mesorcutum; M2, metascntum; 113, metasentellum.
I'roc. N. M. rol. xxvi-02-- 16

Fig. 117. Finhethrips fuscietus, ventral view of pterothorax of female. $\begin{gathered}62 \\ 1\end{gathered} . \mathrm{C}$, coxa; ET, (ndothoracie invaginations; MS, mesontermum; MT, metastemm;

 abdoninal tergite; A^{2}, seromd alolominal tergite; M1, mesorintum; M2, metasentum; M3, metasentellum.
119. Heliothrips fimoralis, ventral riow of pterothoratx of temale. $\frac{62}{1}$. ET, endothoracie insqinations; JS, mesosternmin; MT, metasternmm.
120. Imphothrips strimtus, face of female. ${ }^{115}$. EC, cmiocranial thickening at have of moth cone; LI, labimu; LP', labial palpi; LR, labmm; MD, mantible; ML, internal piereing lobe of maxilla; MP, maxillary palpi; MX, maxilla.
121. Amphollrips striatns, side view of emb of ablomen of female; ovipositor lowered into pesition for use. $\frac{107}{1}$.
12.2. Endothrips himbor, muler side of antemal wermente two to five. $\frac{213}{1}$. NA, semse areat.
12:3. Thrips furplerns, upper side of antemal segmente 1 wo th seven. $\frac{213}{1}$. SC, sense conles.
124. Trichothrips tmbitus, unper wide of antemal segments two to seven. $\frac{130}{1}$. S C, sense coner.
125. Limothrips uremi, donsal view of perothoman of wingless male. $\frac{107}{1}$. A1, first aldominal tergite; A릉, secoud alulominal tergite; M1, mesuscutum; M2, metascutum.
126. A whothrips whtheri, domal view of head ame thorax of female. $\frac{62}{1}$. AI, first abdominal tergite; $\Lambda 2$, secoml abdominal tergite; M1, mesoscutmm; M2, metascutum; Mis, metascutelhun.
127. Anthothrips wromese, ventral view of head and thorax of female. $\underset{1}{6}$. ET, ankothoracie invagination"; М心, mestoternum; MT, metasternom; S1, first abdominal sternite; Ne, second abdominal sternite.

[^0]: ${ }^{a}$ See Canons V and NiII, A. O. U. Code, 1892.

[^1]: ${ }^{a}$ Males of the following species included in this paper are rare or unknown: Parhenothrips drac:max, Heliothrins hacmorrhoidalis, Aptinothrips rufus, Anuphothrips stricuus, Thrips tuluci. Some others are too little known to be placed here.

[^2]: a I have seen and studied the specimens of Miss Beach labeled "Thrips variabilis Beach, Var. c. male and female types." These specimens seem to me to fit much better her description of "Yar. d." An emended description based upon these specimens would not be distinguishable from the foregoing description of "Var. d."

[^3]: "The name Ihysapus was usen by Amyot and Serville for this genus in 1843, but it can mot hold, as this name was previonsly used by Leath for a genus of the Neuroptera in 1817.

 I have been unable to see Targioni-Tozzetti's characterization of his genus Eithrip, but as nearly as I can tell it may include the speries which have been placed in the genus Physopus, and I therefore atopt it for this genus.

[^4]: ${ }^{a}$ I believe that the fore vein coincides with the costal from the spot where they join, the cross vein being more apparent than real, and that the vein which runs parallel with and close to the hind edge is really the hind rein,

[^5]: "Quaintance, Bull. 46, Fla. Agr. Exp. Sta.
 b"Lindeman regartls the antemee as six jointed. but to me joint four has not appeared to allow of being considered as made up of three joints, although there are form more or less well-defined parts, as determned by the rings, which, if considered ans juinte, would make seven in all, instead of six."

[^6]: Body slender, head more than one and one-half times as long as wide 8
 1 \{ Boly more or less thickened, head less than one and one-half times as long as wide
 2 Breadth of aldomen of female nearly or quite one-half its length :
 ${ }^{2}$ (Bradth of ahdomen of female not nearly equal to one-half its length 4
 3 Head broadly romded in front, cheeks without warts....... Trichothrips (p. 191)
 (Head narrowed in front . Eurythrips (p .202)

[^7]: "This heavy rimg vein is a most remarkable character amb, so far as the writer "an learn, nothing like it is fonnd in any wher order of inseets.

